
NAVAL
POSTGRADUATE

SCHOOL
MONTEREY, CALIFORNIA

APPLIED CYBER OPERATIONS
CAPSTONE REPORT

DISCOVERING CYBER INDICATORS OF
COMPROMISE ON WINDOWS OS 10 CLIENTS USING

POWERSHELL AND THE .NET FRAMEWORK

by

Jackie E. Turner and Andrea E. Galloway

March 2019

Project Advisors: John D. Fulp
Theodore D. Huffmire

Approved for public release. Distribution is unlimited.

THIS PAGE INTENTIONALLY LEFT BLANK

 REPORT DOCUMENTATION PAGE Form Approved OMB
No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing
instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of
information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215
Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction
Project (0704-0188) Washington, DC 20503.

1. AGENCY USE ONLY
(Leave blank)

2. REPORT DATE
March 2019

3. REPORT TYPE AND DATES COVERED
Applied Cyber Operations Capstone Report

4. TITLE AND SUBTITLE
DISCOVERING CYBER INDICATORS OF COMPROMISE ON WINDOWS
OS 10 CLIENTS USING POWERSHELL AND THE .NET FRAMEWORK

5. FUNDING NUMBERS

6. AUTHOR(S) Jackie E. Turner and Andrea E. Galloway

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND
ADDRESS(ES)
N/A

10. SPONSORING /
MONITORING AGENCY
REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the Department of Defense or the U.S. Government.

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release. Distribution is unlimited.

12b. DISTRIBUTION CODE
A

13. ABSTRACT (maximum 200 words)
This report describes research that was conducted for the purpose of advancing cyber incident response

capability at the U.S. DoD-defined Tier 3 level. As both authors (at time of writing) serve in cyber support
roles within the U.S. Navy, the report is written with some specificity to Navy shipboard and facility
environments. Given the complexity of modern cyber systems, analysis is generally considered to be the
most technically difficult task involved in the incident handling life-cycle. Significant knowledge is required
to detect (or verify) that an incident has occurred and to obtain sufficient additional system information with
which to direct an informed response and recovery effort. This work focuses on analysis of the Windows OS
10 (client) platform using tools native to PowerShell. The authors “attack” a host, then demonstrate how
PowerShell can be used to analyze system artifacts so as to determine details regarding either attack
techniques used or system weaknesses that allowed the attack to succeed. The authors then describe how the
most reliable artifacts can be combined to define indicators of compromise (IOC) using PowerShell
scripts—scripts that could then be deployed to proactively “hunt” for other infected systems.

14. SUBJECT TERMS
indicators of compromise, IOC, Windows, Windows 10, PowerShell, .NET, .NET
framework, scripts, incident response

15. NUMBER OF
PAGES

139
16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT
Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE
Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT
Unclassified

20. LIMITATION OF
ABSTRACT

UU

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18

i

THIS PAGE INTENTIONALLY LEFT BLANK

ii

Approved for public release. Distribution is unlimited.

DISCOVERING CYBER INDICATORS OF COMPROMISE ON WINDOWS OS
10 CLIENTS USING POWERSHELL AND THE .NET FRAMEWORK

CPO Jackie E. Turner (USN) and PO1 Andrea E. Galloway (USN)

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN APPLIED CYBER OPERATIONS

from the

NAVAL POSTGRADUATE SCHOOL
March 2019

Reviewed by:

John D. Fulp Theodore D. Huffmire
Project Advisor Project Advisor

Accepted by:

Dan C. Boger
Chair, Department of Information Sciences

iii

THIS PAGE INTENTIONALLY LEFT BLANK

iv

ABSTRACT

This report describes research that was conducted for the purpose of advancing

cyber incident response capability at the U.S. DoD-defined Tier 3 level. As both authors

(at time of writing) serve in cyber support roles within the U.S. Navy, the report is

written with some specificity to Navy shipboard and facility environments. Given the

complexity of modern cyber systems, analysis is generally considered to be the most

technically difficult task involved in the incident handling life-cycle. Significant

knowledge is required to detect (or verify) that an incident has occurred and to obtain

sufficient additional system information with which to direct an informed response and

recovery effort. This work focuses on analysis of the Windows OS 10 (client) platform

using tools native to PowerShell. The authors “attack” a host, then demonstrate how

PowerShell can be used to analyze system artifacts so as to determine details regarding

either attack techniques used or system weaknesses that allowed the attack to succeed.

The authors then describe how the most reliable artifacts can be combined to

define indicators of compromise (IOC) using PowerShell scripts—scripts that could

then be deployed to proactively “hunt” for other infected systems.

v

THIS PAGE INTENTIONALLY LEFT BLANK

vi

vii

TABLE OF CONTENTS

I. INTRODUCTION..1
A. THE DOD CYBER INCIDENT HANDLING PROGRAM2

1. Detection Phase ..3
2. Preliminary Analysis Phase ..3
3. Preliminary Response Actions Phase ...5
4. Incident Analysis Phase ...5

B. ARTIFACTS ..5
C. INDICATOR OF COMPROMISE (IOC) ...6
D. PREVIOUS RELATED WORK ..7
E. REPORT ORGANIZATION ..8

II. CANDIDATE WINDOWS OS 10 ARTIFACTS OF INTEREST11
A. WINDOWS 10 OVERVIEW ..11
B. THE “FULPRANT EIGHT” ..12

1. Files..13
2. Users ..24
3. Processes ...25
4. Registry ...28
5. Accounts ..31
6. Network Configuration and Connectivity Information32
7. Task Scheduler ...34
8. Logs ...35

III. POWERSHELL ...43
A. CMDLET STRUCTURE ..44
B. IDENTIFYING PROMINENT WINOS 10 ARTIFACTS USING

POWERSHELL ...46
1. Machine and OS Information ...48
2. Files..49
3. Users Logged-On ..57
4. Logs ...58
5. Processes ...62
6. Registry ...65
7. Accounts ..67
8. Network Configuration and Connection Information..............68
9. Tasks Scheduled ...69

viii

IV. CHOOSING A “NOISY” ATTACK/COMPROMISE71
A. CONSTRAINTS AND CONSIDERATIONS..72
B. EXECUTION OF THE ATTACK/COMPROMISE AND

ARTIFACT GENERATION ..73
1. Reconnaissance and Exploitation ...74
2. Lateral Movement ..78
3. Domain Escalation ...82

V. EXAMPLE ANALYSIS SCENARIO ..85
A. GENERAL INVESTIGATION/ANALYSIS METHODOLOGY85

1. Preparation ...86
2. Customer Complaints and Fact Gathering86
3. Investigation ...86
4. Documentation ...87

B. THE CIRCE SCENARIO: STEP-BY-STEP ..87
1. Accounts ..88
2. Files: Typed URLs ...89
3. Network Connectivity ..89
4. Processes ...91
5. Files..93
6. Network Connections: Updated..96
7. Processes: Parent and Child Relationships97
8. Files: MFT ..98
9. Correlation of data ...99
10. Registry ...101
11. Logs: PowerShell ..101
12. Logs: System ...102
13. Logs: Security ...104
14. Using CufA as IOC with PowerShell105

VI. CONCLUSION ..109
A. SUMMARY ..109
B. FUTURE WORK ...110

LIST OF REFERENCES ..113

INITIAL DISTRIBUTION LIST ...117

ix

LIST OF FIGURES

Figure 1. CIRCE Categories. Source: [1]. ...4

Figure 2. Windows Explorer Open Shares in Network Locations.14

Figure 3. Console Output of Net Share Cmdlet. ...15

Figure 4. Hex Dump of a custDest Jump List File. ...16

Figure 5. Console Ouput of Strings from custDest Jump List File.17

Figure 6. Console Output of Parsed LNK Files from a custDest Jump List File.18

Figure 7. Hex Dump Output of an autoDest Jump List File.19

Figure 8. Windows Explorer Prefetch Files. ...20

Figure 9. Process Hacker 2 Display of svchost.exe. ...27

Figure 10. Process Explorer Display of DNS cache Service27

Figure 11. Process Hacker 2 Display of Memory Strings from svc.exe.28

Figure 12. Registry Terminology. ...29

Figure 13. TypedURLSTime Subkey. ...30

Figure 14. TimeZoneInformation Value Name. ..31

Figure 15. Console Output of Netstat -b Output. ..33

Figure 16. Local Security Policy Audit Policy..37

Figure 17. Entering PowerShell. ...48

Figure 18. Filter Specific OS Objects. ..49

Figure 19. Console Ouput of Get-ItemProperty ..49

Figure 20. Console Output of CLI Tree Command...50

Figure 21. Console Output of Contain the Hidden Attribute.50

Figure 22. Console Output of Malicious File Type Query..51

Figure 23. Console Output of Open Files..52

x

Figure 24. Console Output of Open Shares. ..53

Figure 25. Console Output of Open Share’s Access Permissions.53

Figure 26. Console Output of Get-PSDrive. ...54

Figure 27. Output to File Jump List Query. ..55

Figure 28. Console Output of Prefetch Files. ..56

Figure 29. Console Output of Compress-Archive. ..56

Figure 30. Console Output of DNS Cache Entries. ...57

Figure 31. Console Output of Current Logon. ..58

Figure 32. Console Output of Logon and Logoff Events Query.59

Figure 33. Console Output of Failed Logon Query...59

Figure 34. Console Output of Cleared Event Logs. ..59

Figure 35. Console Output of Firewall Profile Configurations.60

Figure 36. Console Output of Firewall Rule Query. ...61

Figure 37. Console Output of Firewall Adds, Changes, and Deletions Query.61

Figure 38. Console Output of Threat Detection Query. ..62

Figure 39. Console Output of Active Processes. ...63

Figure 40. Console Output of Get-Process Filtered by Start Time.63

Figure 41. Console Output of Running Services. ..64

Figure 42. Console Output of Account that Started a Service.65

Figure 43. Console Output of DLL Files for a Process. ..65

Figure 44. Console Output HKLM Run and RunOnce Sub-hives.66

Figure 45. Console Output Microsoft.PowerShell Properties.66

Figure 46. Console Output of Startup Applications. ...67

Figure 47. Console Output of User Profiles on The Host (Client) System.68

Figure 48. Console Output of Network Connections and Associated Processes.68

xi

Figure 49. Console Output of Scheduled Tasks with Update in the Task Name.69

Figure 50. Console Output of Scheduled Tasks in the \Microsoft\Office\ Task
Path. ...69

Figure 51. Polonaise User and Host Environment. ...72

Figure 52. Attack Phase Chain Concept. Adapted from [35] and [36].73

Figure 53. Victim-PC Exploitation from the Attack-PC. ..75

Figure 54. Victim-PC Malicious Account Added. ..75

Figure 55. Attack Enumerated Domain Groups and Users. ..77

Figure 56. Attack Enumerated Domain Admins. ..77

Figure 57. Attack Stage 1 Depiction of the Noisy Attack/Compromise.78

Figure 58. Attack “Logonpasswords” Dump Commands Executed on Victim-
PC. ..80

Figure 59. Attack Pass-the-hash Commands Executed on Victim-PC.81

Figure 60. Attack Stage 2 Depiction of the Noisy Attack/Compromise.81

Figure 61. Attack Kerberos Ticket Dump Commands Executed on Victim-PC.........82

Figure 62. Attack Stage 3 Depiction of the Noisy Attack/Compromise.83

Figure 63. Investigation of Accounts Logged on the Victim-PC.89

Figure 64. Get-NetworkStatistics Function Written in PowerShell 5.0. Adapted
from [41]. ...90

Figure 65. Investigation of Output of Get-NetworkStatistics on Victim-PC.90

Figure 66. Investigation of Something32.exe Get-CimInstance Command
Output on Victim-PC. ..91

Figure 67. Investigation of mMmrJNpeOhVx.exe Get-CimInstance Command
Output on Victim-PC. ..92

Figure 68. Investigation of Rundll32.exe Get-CimInstance Command Output on
Victim-PC. ...92

Figure 69. Investigation of Temp Directory Listing on Victim-PC.94

xii

Figure 70. Investigation of Temp Directory Listing Parsed for VBS Files on
Victim-PC. ...95

Figure 71. Investigation of Hash of the Potentially Malicious VBS files on
Victim-PC. ...95

Figure 72. Investigation of Updated Output of Get-NetworkStatistics function
on Victim-PC. ..96

Figure 73. Show-ProcessTree Function Written in PowerShell 5.0. Adapted
from [42]. ...97

Figure 74. Investigation of Process Tree Display of Something64.exe.98

Figure 75. Investigation of MFT Record of Something64.Exe98

Figure 76. Investigation of Prefetch Files on Victim-PC ..99

Figure 77. Investigation of User Accounts and Associated SIDs101

Figure 78. Investigation of PSEXEC EULA Accepted by FranzL Account.............101

Figure 79. Investigation of Search Results for Mimikatz in the PowerShell
Operational Logs on Victim-PC ..102

Figure 80. Investigation of Query for Services Installed on the Victim-PC104

Figure 81. Investigation of Jackattack Account Was Added to a Security-
Enabled Local Group ...105

Figure 82. PowerShell IOC Script ...106

xiii

LIST OF TABLES

 Location of DLLs. Adapted from [9]. ..14

 Location of Program Files. Adapted from [9]. ..14

 Locations of Jump Lists. Adapted from [14]. ..16

 Locations of Common Browser Cookie File Paths. Adapted from
[9]. ..21

 Locations of Browser History Locations. Adapted from [9].22

 Initial DLL Search Criteria. Adapted from [16].23

 Windows Store Application Standard DLL Search Order. Adapted
from [16]. ...23

 Desktop Application Standard DLL Search Order. Adapted From
[16]. ..23

 Locations of Logon Processes. Adapted from: [9].24

 Windows LogonTypes. Adapted from [17]. ..25

 Registry Structure. Adapted from [9]. ...29

 Account Artifacts. Adapted from [9]. ..32

 Location of Network History Directories. Adapted from [9].32

 Network Configuration Information Commands. Adapted from [9].33

 Machine and OS Information Commands. Adapted from [9].34

 Locations of Scheduled Tasks. Adapted from [9].35

 Account Enumeration Event IDs. Adapted from [24].37

 Account Management Event IDs. Adapted from [24].38

 Account Logon and Logon Event IDs. Adapted from [24].39

 Windows 10 Added Logon Information. Source: [25].39

 Windows Services Event IDs. Adapted from [24].40

xiv

 WLAN Event IDs. Adapted from [24]. ...40

 Scheduled Task Security Event IDs. Adapted from [24].41

 PowerShell Event IDs. Adapted from [22]. ...42

 Polonaise Network and Host Environment Information.71

 Polonaise User Account Information. ..72

 Attack Commands Used to Obtain User and Group Information.76

 Attack Tools and Scripts Ported from the Attack-PC to the Victim-
PC ...79

 Attack NetSessionEnum Enumerated Account Information.79

 Investigation of Path and Creation Date of Possible Malicious Files.93

 Investigation of Timeline of Events Observed by the IR100

xv

LIST OF ACRONYMS AND ABBREVIATIONS

AD Active Directory

API application programming interfaces

ATA advanced threat analytics

autoDest automatic destination Jump List

ATP advanced persistent threats

AV antivirus

BCD boot configuration data

C2 command and control

CF compound file

CIM common information mode

CIRCE cyber incident or reportable cyber event

CLI command line interface

CNDSP computer network defense service provider

COM component object model

CSSP cybersecurity service provider

CSV comma-separated value

CustDest custom destination Jump List

CuFA curated forensic artifact

DC domain controller

DLL dynamic link libraries

DNS domain name services

DoD Department of Defense

EOL end of life

EULA end-user license agreement

FAT file allocation table

GMT Greenwich mean time

GPO group policy object

GUI graphical user interface

xvi

IE Internet Explorer

IOC indicator of compromise

IOT internet of things

LNK link

LUID locally unique identifier

MAC media access control

MAC modified accessed and created

MFT master file table

MIR Mandiant intelligent response

MSIL Microsoft intermediate language

NTFS new technology file system

NTLM new technology local area network manager

OLE object linking and embedding

OLE CF object linking and embedding compound file

OS operating system

PID process identifier

RAM random access memory

SAM security account manager

SAM-R security account manager remote

SCP secure copy protocol

SIEM security information and event management

SMB service message block

SNR signal to noise ratio

SID security identifier

SSID service set identifier

TTP tactics (or tools), techniques, and procedures

UAC user access control

URL uniform resource locator

UWP universal Windows platform

VBS visual basic script

xvii

WLAN wireless local area network

WMI Windows management instrumentation

WMIC Windows management instrumentation command-line

XML extensible markup language

xviii

THIS PAGE INTENTIONALLY LEFT BLANK

xix

ACKNOWLEDGMENTS

Jack would like to express his gratitude and thanks to his wife, Regina, for her

unconditional love and support; son, Noah, for ensuring that Jack had time to complete

work on time; daughter, Isabella, who provided comedic relief during long study sessions;

and his family, who provided encouragement, nourishment, and company during this

process.

Jack would like to dedicate this work to his late father, Harry, who impressed upon

Jack to give his best effort toward anything to which he devoted his energy. Harry passed

away before this thesis was finalized, but his continued presence has urged Jack to strive

to achieve completion of this work and continues to urge him to achieve all of his goals

in life.

Andrea would like to give honor to the invaluable help of God; daughter, Caia, for

providing her with the motivation to see this through; husband, Marcus, for helping her to

see the light at the end of the tunnel; mother, Esperanza, for providing her time to complete

this work; and her family, who love and support her. Andrea would like to express that this

endeavor is complete due to the great assistance from others. Andrea would like to offer a

heartfelt thanks to those who assisted.

Sincere thanks go to the members of our capstone advisory and review committee,

J. D. Fulp, Theodore Huffmire, Duane Davis, Cynthia Irvine, and Dan Boger, for their

swift encouragement, aid, and review throughout this process.

xx

THIS PAGE INTENTIONALLY LEFT BLANK

1

I. INTRODUCTION

Established security implementations often depend on recognition of a file

signature to detect a compromise. Many contemporary attackers recognize this and are

trending toward less noisy forms of breach. As attacks become far less generalized, it has

become more arduous and less useful to detect malicious activity utilizing network analysis

alone. Client (host)-based infiltration, internal to the network, offers an attacker the means

to gain access as a legitimate insider and pivot into more significant areas of the network

unseen. This strategy is quiet and can evade detection in the early stages of the cyber kill

chain. However, with effective detection and analysis tools and the training to employ

them, the cyber defender will be better equipped to detect such infiltrations.

PowerShell, developed by Microsoft, is a shell (user interface that allows direct

access to an OS’s services) that enables the user to perform low-level task and

configuration management. PowerShell works with external languages such as the .NET

framework. Running principally on Windows, the .NET framework provides an

environment where software applications can be created, installed, and implemented.

PowerShell runs on top of the .NET framework; unlike other shells, when a system

administrator user uses PowerShell, they have access to .NET framework objects.

Fundamentally, an administrator system user can access certificate or registry stores as

quickly as a file in the file system.

PowerShell provides not only the ability for the knowledgeable user to perform

operations faster than traditional menu-driven interaction, but also allows the performance

of those operations for which there simply is no user-available graphical user interface

(GUI) to perform the desired task. PowerShell, if leveraged to its full potential, can greatly

aid in the detection and analysis of system compromises when traditional methods, such as

antivirus, may not suffice.

All OSs, along with the various applications that run on them, execute processes

that create, and respond to, various system events. Many of these events generate system-

level artifacts that can be accessed and evaluated by an investigator who knows how to

2

interpret them. Skillful interpretation and correlation of well-chosen artifacts allow the

cyber defender to construct incident timelines, uncover motives, build a case against an

adversary, and possibly anticipate future malicious actions.

This capstone is intended to raise awareness for the utility of PowerShell to help

cyber incident response personnel to more thoroughly investigate suspect or known

intrusions, and to leverage newly discovered indicators of compromise (IOCs) to aid in the

proactive discovery of other systems that may have been infected/attacked using the same

or similar methods.

A. THE DOD CYBER INCIDENT HANDLING PROGRAM

The CJCSM 6510.01B, 10 July 2012, titled Cyber Incident Handling Program [1],

defines the DoD program for handling cyber incidents and reportable cyber events. From

this point forward, the full title of this document is shortened to “CJCSM.” If we refer to

any other document authored by the Joint Chiefs of Staff, the distinction will be made clear.

The CJCSM incident handling life cycle includes the following six phases [1]:

• Phase 1: Detection of events

• Phase 2: Preliminary analysis and identification of incidents

• Phase 3: Preliminary response actions

• Phase 4: Incident analysis

• Phase 5: Response and recovery

• Phase 6: Post-incident analysis

The primary foci of this capstone are on the preliminary analysis and identification

of incidents phase and incident analysis phase [1]. Although there is no sharp line of

demarcation between any of these processes or phases, the activities that this capstone

focuses on reside predominantly within the two aforementioned phases, owing to their

emphasis on information discovery and analysis.

3

1. Detection Phase

The detection phase is arguably the most cyclical of all the phases within the cyber

incident handling process and life cycle. During the detection phase, the detection of

suspicious events can occur by a report from an individual or user, or by an automated

detection system or sensor such as an intrusion detection system (IDS) or intrusion

prevention system (IPS). Furthermore, a scan for select indicators of compromise may

yield information leading to additional detections or follow-up analysis that better defines/

refine the scope of a detected incident. This report assumes detection of a suspicious

event has already occurred and proceeds then with the initial investigatory analysis

(i.e., preliminary analysis phase) that will determine whether an incident—or reportable

cyber event—has occurred.

Given that we are adhering to the incident handling framework outlined in the

CJCSM [1], and the fact that this framework addresses not only incidents (implied adverse

impact) but also other events that are not inherently damaging, but nonetheless worthy of

reporting; we adopt the acronym CIRCE to capture both of these possibilities: cyber

incident or reportable cyber event [2].

2. Preliminary Analysis Phase

The primary objectives in the preliminary analysis phase are to determine if a

suspicious event is a CIRCE (or not), and to report on details discovered, as appropriate.

Each CIRCE can be associated with one or more of the categories listed in Figure 1 [2].

Furthermore, a non-incident (but report-worthy) event can be upgraded to an incident

during the preliminary analysis phase or during the incident analysis phase following a

more thorough investigation life cycle, should new evidence warrant such. As noted in the

CJCSM, “if the proper preliminary analysis is not done, some incidents may not be

identified, and therefore never reported” [1]; possibly affecting global security and

potentially missing an IOC that could be applied within the network and to external

networks vulnerable to similar attack.

• Initial information required during this phase of the incident life cycle
include, but are not limited to

4

• The general description of the event/incident

• The status (ongoing or ended; successful or unsuccessful)

Reporting requires that the initial responder understand enough of the nature of the

activity to give an informed first impression analysis of the CIRCE, and to report if it was

successful or unsuccessful, as well if it is ongoing or ended. We state “first impression”

here, to make it clear that the analysis in this phase prioritizes promptness of a big picture

understanding over the much more thorough, though lengthy, analysis that is expected in

Phase 4.

Figure 1. CIRCE Categories. Source: [1].

5

3. Preliminary Response Actions Phase

Following the preliminary analysis phase, first responders enter the preliminary

response phase of the cyber incident handling process and life cycle. During this phase, the

responder will work with the supporting CSSP to [1]:

• Contain the incident

• Acquire and preserve data

• Continue documentation

Arguably, event-related data from the CIRCE is acquired during both the

preliminary analysis phase and the preliminary response phase. However, the data required

in the preliminary response phase is notably more focused on primary storage vice

secondary storage, to include volatile data (system registers, cache, random-access memory

[RAM]). It is at this point for most incidents that the CSSP incident handlers take the lead.

4. Incident Analysis Phase

Following the preliminary response phase, CSSP incident handlers enter the

incident analysis phase, and will conduct system analysis and work to understand the

patterns of activity to characterize the threat. The ultimate objective of this phase is to

discover attack delivery vectors and system weaknesses that made the attack possible.

These two items, collectively, are referred to as root cause [2]. Depending upon

resources (time and expertise) available, root cause(s) may not be determined for every

incident. Artifacts discovered during this phase can be used to create new IOCs or update

existing IOCs.

B. ARTIFACTS

The term artifact does not have a universal definition within the digital forensics

community. An artifact, in our cyber incident response context, has been loosely

understood to be any clue or investigative lead that may assist in determining if a CIRCE

has occurred. Artifacts can be said to be the building blocks of an IOC; defining the various

observable data elements used to define the IOC, and then look for additional instances of

them—whether historically (in previously collected data) or in the future. Harichandran et

6

al. [3] noted the inconsistency among definitions of the term artifact within the

cybersecurity community, and attempted to define a curated forensic artifact (CuFA) by

utilizing current ontological usage of the word “artifact” as well as survey feedback from

cybersecurity professionals across multiple fields. Harichandran et al., assert that the

purpose of a CuFA is to “find evidence on varying systems in order to improve future

investigations.” Therefore, the CuFA must have a location that is generally static and

meaningful across different devices.

This report adopts the definition proposed by Harichandran et al. [3]. A CuFA

“must be curated via a procedure which uses forensic techniques … must have a location

in a useful format … must have evidentiary value in a legal proceeding … must be created

by an external force/artificially … must have antecedent temporal relation/importance …

and must be exceptional (based on accident, rarity, or personal interest)” [3].

C. INDICATOR OF COMPROMISE (IOC)

Richard Bejtlich [4] writes that the earliest use of the term “indicator of

compromise,” appeared in the second edition of Incident Response & Computer Forensics

and the term “indicator” was used to describe an “investigative lead or tip” [4]. The first

use of the term indicator of compromise, in its generally agreed upon—de facto—definition

as of the time of this writing, appears to have been from the organization Mandiant. In the

first Mandiant M-Trends report, published January 25, 2010, Mandiant defined IOCs as

“specific signatures … [that] look for specific file and system information … [and] also

use logical statements that characterize malicious activity in greater detail” [4]. A day later,

Matt Frazier published “Combat the APT by Sharing Indicators of Compromise” to the

Mandiant blog [5]. In his blog post, Frazier detailed that an IOC is a Boolean decision tree

rather than a statically defined list of indicators. The software behind the content of this

timely blog post was Mandiant’s Mandiant intelligent response (MIR 1.0), written and

field-tested by David Ross. MIR is an agent-based client/server architecture utilizing a

collection of information gleaned from host-based agents. MIR stores all of the audit and

analysis results in XML schema that can be interpreted and utilized by nearly any open-

source forensic tool capable of processing rules expressed using Boolean logic. Ross built

7

numerous add-ons to the MIR platform, allowing an analyst to perform a sweep for

provided IOC(s) and see hits.

Utilizing a Boolean decision tree to aid in determining compromise allows the user

to identify true positives, reject false positives, and evaluate exceptions to an existing IOC

Boolean decision tree; allowing the analyst to adapt the tool to detect mutations and strains

of old “known bad” [5]. Additionally, Ross’s add-ons integrated the MIR with compatible

security information and event management (SIEM) or log management solutions. This

integration allowed for automation and search functionality across enterprise networks.

Enter the era of proactive cyber forensics utilizing IOCs.

All this is to say that IOCs are not spreadsheets of static information, but rather

fingerprints that are ever-changing, evolving, and mutating that can be used to identify both

known bad and unknown bad. IOCs rely on useful artifacts to increase the likelihood of

finding “evil” [6].

D. PREVIOUS RELATED WORK

This capstone builds on the previous work conducted by NPS students Simone M.

Mims and Tye R. Wylkynsone, who focused on analyzing select system artifacts that give

first responders the best information to identify if a CIRCE has occurred within a Windows

XP environment [7].

Mims and Wylkynsone [7] focused on identifying select Windows XP system

artifacts that would lead an incident responder (IR) toward identifying whether a CIRCE

had occurred. As the authors indicate in their work, “Each operating system produces its

own unique collection of system artifacts” [7].

Our report focuses on the latest host version of the Microsoft OS family, Windows

10, which was released in 2015. Our report assumes that a CIRCE has occurred, and

examines the identification of IOCs to be deployed using PowerShell and the .NET

framework.

8

Starting April 8, 2014, Microsoft no longer provided technical support or security

updates to Windows XP, and as of the writing of this report, Microsoft will no longer

provide support or security updates to Windows 7 as of July 14, 2020 [8].

Due to both the timely end of life (EOL) of Windows XP and the upcoming EOL

of Windows 7 OSs, it is important to focus on identifying artifacts within the currently

supported and evolving OS versions by utilizing a feasible up-to-date toolset for identifying

and analyzing those artifacts; PowerShell 5.0.

E. REPORT ORGANIZATION

This report covers the usage of PowerShell to investigate Windows OS (Windows

10 in particular) system artifacts that are considered the most reliable for determining if a

system experiences a CIRCE. The utility of such an investigation is twofold. First, it is

regarded as an exercise in reactive cyber forensics: analyzing pertinent data to determine

if a system has been compromised, when suspicion of compromise already exists. Second,

it is considered an exercise in proactive cyber forensics—often called “hunting”—as the

discoveries of artifacts on one machine can be captured, evaluated as indicators of

compromise, and applied as signatures to non-suspect systems to identify previously

unknown/unsuspected compromises [2]. The remainder of this chapter will outline the

capstone organization.

Chapter I provides an overview of the DoD cyber incident handling process and

outlines the two focus areas of this capstone: the preliminary analysis and identification of

incidents phase and the incident analysis phase. Additionally, this chapter defines the terms

“artifact” and “indicator of compromise” (IOC). Lastly, this chapter provides an overview

and relationship to previous work conducted by Simone M. Mims and Tye R. Wylkynsone

[7] in their thesis titled, “Cyber Event Artifact Investigation Training in a Virtual

Environment.”

Chapter II presents a discussion on the candidate Windows 10 OS artifacts that

provide the investigators/responders reliable means for determining if a system has been

compromised. This capstone does not cover every possible artifact; rather, it provides a

categorical list of types of artifacts, and a collection of pertinent and relevant artifacts

9

within each category. This chapter provides a high-level overview of the Windows 10 OS.

Secondarily, this chapter provides a descriptive discussion on signal-to-noise ratio, in

regard to artifact collection. In security operations, true positives are the signal, and false

positives are the noise. The researchers discuss the FULPRANT eight (files, accounts, logs,

network connections, scheduled tasks, users logged on, registry, processes) [6] artifact

categories, their applicability in reactive and proactive investigation, and descriptions of

signal, vice noisy artifacts, which can produce relevant indicators of compromise for

proactive cyber forensics.

Chapter III provides an overview of PowerShell to include, cmdlet structure, and

its utility in identifying prominent Windows 10 IOC-worthy artifacts.

Chapter IV provides an overview of the methodology followed in choosing an

attack vector to generate many relevant artifacts (noisy attack) for a reactive cyber forensic

scenario, and the steps taken to generate the attack. It provides information on the chosen

attack, that is, the criteria for inclusion, what the attack parameters were, and how the attack

was executed. The anticipated and expected artifacts of interest that were generated are

outlined and defined.

Chapter V provides a focused discussion of how on-scene (i.e., Tier 3) cyber

incident investigators/responders can best utilize PowerShell to perform reactive cyber

forensics to discover artifacts on the targeted host. Secondarily, a discussion is presented

regarding how investigators/responders can perform proactive cyber forensics—threat

hunting—utilizing PowerShell to identify compromises of systems not already suspect of

being compromised.

Finally, Chapter VI provides a summary and conclusive remarks as well as

recommendations for future work.

10

THIS PAGE INTENTIONALLY LEFT BLANK

11

II. CANDIDATE WINDOWS OS 10 ARTIFACTS
OF INTEREST

Many new features were introduced in Windows 10. In this chapter, we will present

changes in artifact locations and file structure relative to previous versions of Windows.

We do not focus heavily on feature changes unless they are relevant to specific candidate

Windows 10 OS artifacts that provide the investigators/responders reliable means for

determining if a system has been compromised. For example, user account control UAC

was introduced in a new way in Windows 10 [9]. UAC is a security feature that allows

users to perform common administrator tasks without having to switch to an administrative

role or user account. Users perform normal tasks as standard users operating under a

standard user token, but utilize a full administrator access token (with supplied pin or

password) when performing administrative tasks. UAC is enabled by default [9]. This

changes the way that the IR looks at credential usage when investigating a CIRCE.

The information provided in this report is pertinent to Windows 10. In most

instances, the file and registry paths, log IDs, and other particulars are only applicable to

Windows 10. This information frequently changes and is subject to change with future

updates and versions of Windows 10.

A. WINDOWS 10 OVERVIEW

Microsoft Windows 10 brought with it a new internal build as well as a new process

for future updates and version control. Microsoft announced with the release of Windows

10 a direction toward unifying consumer devices through a common OS [9]. In addition to

more traditional platforms, Windows 10 runs on the XBOX One gaming and entertainment

console, Microsoft HoloLens mixed reality holographic computer, and an array of internet

of things (IOT) devices [9]. A full-fledged version of the OS is not necessary for a device

like HoloLens [10], that has no peripheral devices; however, the core kernel and structure

are present in all versions of Windows 10. This change and direction results in a

commonality that; though beneficial in simplifying the job of defenders, also simplifies the

job of attackers.

12

Windows application programming interfaces (API) or WinAPI give programs the

ability to ask the OS to perform tasks. Nearly everything that a Windows program does

involves invoking various API functions [9]. Starting with Windows 10, Microsoft has

taken one step further away from Windows 32 API functions and forced programs to place

a heavier dependency on its .NET Core framework [9], vice Windows API calls.

Additionally, with the launch of Windows 10 S [11], Microsoft’s security-focused version

of Windows 10, none of the existing 32- or 64-bit software will run due to the removal of

WinAPI. Microsoft plans to utilize the universal Windows platform (UWP) more heavily,

which is due to replace the current WinAPI model [12]. In a 2015 announcement to

Windows developers, Microsoft emphasized that the .NET Core Framework was the way

forward, unifying the format in which applications would be geared to function on all

Windows 10 devices [9]. This is an important and relevant topic of discussion when

looking toward the future of incident response on Windows 10 and future OS devices; as

this changes the role in which live response tools will play in incident response. With an

inability to port existing tools, responders will find it necessary to become ever more reliant

on built-in capabilities such as Microsoft PowerShell and the .NET framework.

B. THE “FULPRANT EIGHT”

The FULPRANT eight (files, users logged on, logs, processes, registry, accounts,

network connections, scheduled tasks) are artifact categories that were originally identified

in 2011 in the Sans Institute report titled The Incident Handler’s Handbook [6].

Each category of artifacts contains a subset of the full set of classical system-,

network-, and malware-level artifacts that are applicable in both reactive and proactive

investigations. The remainder of this chapter provides a basic description of candidate

Windows 10 OS artifacts that provide the investigators/responders with a reasonably

effective means for determining if a system has been compromised. We provide a

description of the artifact; a location, when available; and an explanation of the artifact’s

relevancy in both proactive and reactive analysis.

13

1. Files

The most current release of Windows 10 (red stone 5), as of the time of this report,

operates on the new technology file system (NTFS) [9]. This file structure has been used

by nearly every Windows OS version and supports the legacy file allocation table (FAT)

file system which was originally designed for smaller disk sizes and more rudimentary

folder structures (i.e., Windows 95 and prior). We cover what we believe to be the most

relevant artifacts for an IR to curate within the Windows 10 NTFS file structure in the event

of a CIRCE.

a. Master File Table (MFT)

NTFS volumes contain a MFT file, the primary store of metadata on NTFS systems

[9]. This file is not accessible by the Windows API; however, it can be parsed and its data

viewed from within the OS using PowerShell to access the raw disk (see Chapter III: Files

> MFT). The MFT file contains a record of all files and folders on a drive, to include

timestamps, data location (e.g., head, sector, and cylinder), and file status (active or

inactive) [9]. File status is an important file type artifact. It is noteworthy that neither

deleting a file nor moving a file deletes its contents in the MFT. The OS sets a MFT status

flag as “inactive” on a file or folder that has been deleted or moved. This indicates the file

status to the system and notifies the system that the disk space associated with the given

MFT entry is available for reuse by another file or folder. Owing to this behavior, recovery

of deleted data is not “magic,” but rather a simple matter of lucky timing by the IR; that is,

a file or folder of interest can be recovered if it has not yet been reused. This useful bit of

investigatory information makes the MFT an important CuFA to be acquired by the IR.

b. File System Redirector

The Windows OS hides from the user much of what is performed behind the scenes.

When 64-bit systems were introduced, most dynamic link libraries (DLL) for 32-bit

applications were not updated or changed [13]. Table 1 provides the locations for 32-bit

and 64-bit DLLs. Windows 32-bit applications can be run on a 64-bit system due to a file

system redirector which performs the behind-the-scenes redirection of 32-bit application

load requests for DLLs.

14

 Location of DLLs. Adapted from [9].

Bit Size File Path
32-bit Libraries %SYSTEMROOT%\system32\
64-bit Libraries %SYSTEMROOT%\SysWOW64\

Similar to the separation of 32-bit and 64-bit DLLs, 32-bit and 64-bit programs

are also stored in separate file directories [9]. Table 2 provides the locations for 32-bit and

64-bit programs. It is essential for the IR to understand the separation, and its impact on

reconstructing Windows API calls that may have happened in result of a CIRCE.

 Location of Program Files. Adapted from [9].

Bit Size File Path
32-bit applications \Program Files (x86)\
64-bit applications \Program Files\

c. Mapped Drives and Open Shares

Windows OS will automatically assign a drive letter to any identified storage

peripheral [9]. Logical drive letters can be manually assigned to local folders, as well as

remote shares. To view remote shares, also referred to as open shares, we can open the File

Explorer and select “Network” from the navigation pane, as shown in Figure 1.

Figure 2. Windows Explorer Open Shares in Network Locations.

15

A connection can be made to a remote share without assigning a logical mapping.

Consequently, shares are not visible in Windows Explorer if they are not assigned a

logical drive letter [9]. It is important that the IR be aware of this feature and be diligent

in looking for all open shares, not just those that are logically mapped. A full list of

current shares, to include both mapped and non-mapped drives, can be seen by utilizing

the native CLI command “net share,” as seen in Figure 3. Additionally, any systems

initiating access may be revealed in the registry key, HKEY_CURRENT_USER\

Software\Microsoft\Windows\CurrentVersion\Explorer\MountPoints2 [9].

Figure 3. Console Output of Net Share Cmdlet.

d. LNK files and Jump Lists

Jump Lists are a feature that was introduced in Windows 7 [14]. Jump Lists are

created by applications or by the OS to help a user access, and view recently accessed files

and folders.

Jump Lists provide a bountiful amount of data to the IR, including “file name, file

path, MAC (modified, accessed, and created) timestamps, volume name from which the

file was accessed, and the history of uploaded and downloaded files through web browsers”

[14]. Table 3shows the location of both automatic (system created) and custom (user-

created) Jump List files.

16

 Locations of Jump Lists. Adapted from [14].

Type File Path
automaticDestination-
ms (autoDest)

%USERNAME%\AppData\Roaming\Microsoft\Windows\
Recent\AutomaticDestinations

customDestination-
ms (custDest)

%USERNAME%\AppData\Roaming\Microsoft\Windows\
Recent\CustomDestinations

The two types of Jump List files differ in both contents and file

structure. Examining the custDest Jump List file in a Hex Editor such as HxD shown

in Figure 4, we can see that the contents of the Jump List file named,

“1bc9bbbe61f14501.customDestinations-ms,” pertain to a user’s interaction with

Microsoft OneNote. Examining the file in a hex editor allows for a human-readable

translation of the corresponding bytes of data when it translates to ASCII text. However,

we can view the same translated text strings by running the cmdlet “Strings,” which is

shown in Figure 5. The cmdlet strings outputs the human-readable text into an array. Note

in the array the instruction “Take screen clipping” can be seen. This instruction was issued

to take, and store, the screen clipping of Figure 4 in Microsoft OneNote.

Figure 4. Hex Dump of a custDest Jump List File.

17

The structure of the custDest file is [14]:

• Header

• LNK files

• Data

• Footer

Figure 5. Console Ouput of Strings from custDest Jump List File.

Link (LNK) files are simple but valuable artifacts that are created by users or the

OS. Simply put, they are shortcuts to a file or folder and typically contain [14]:

• The path of the original file or folder

• Metadata of both the LNK and original file or folder

• MAC times of both the LNK and original file or folder

18

The LNK files can be parsed out of the Jump List file later during the analysis phase

using a portable parsing cmdlet. As seen in Figure 6, by parsing the Jump List file for the

LNK files, the IR can glean important CuFAs such as; the location of the file, its MAC

times, and any DLLs it might have called.

Figure 6. Console Output of Parsed LNK Files from a custDest Jump List File.

The autoDest Jump List file is of the object linking and embedding (OLE)

compound file (CF), or OLE CF, format as noted by the leading hex bytes “D0 CF 11 E0

A1 B1 1A E1” in Figure 7 [14]. OLE CF files are not able to be examined in a hex editor

or via the use of the “Strings” CLI command, but they are still relevant CuFA that can be

examined with additional parsing tools later in the analysis phase.

19

Figure 7. Hex Dump Output of an autoDest Jump List File.

e. Prefetch Files and Timestamps

Prefetch-files (*.pf) contain metadata of executables on the host system. The

location of Prefetch files is %SYSTEMROOT%\Prefetch. In this directory the following

files can be found [15]:

• dynrespri.7db, cadrespri.7db, and ResPriHMStaticDb.ebd: These files
appeared after the Creators update in October 2018. As of the time of this
report, there is no public Microsoft documentation on these files or their
extension types; however, professionals analyze and update this
information frequently.

• “Layout.ini: Contains data used by the disk defragmenter [9].”

• AppName-########.pf: Each of these files represents an executable file
that ran.

• The Prefetcher uses an algorithm to anticipate programs that will be run
again, and thus allows these programs to load into memory more quickly.
The last time of program execution, filename, the location of the
executable at the time of execution, and DLLs called are contained within
the Prefetch files (*.pf), and all can be valuable information to the IR.

20

Although the location of Prefetch files is the same as in previous Windows versions,

the format for Prefetch files (*.pf) in Windows 10 has changed from previous Windows

versions. The files are compressed using the Xpress Huffman algorithm, the same

compression method that Windows 8.1 uses to compress its SuperFetch files [15]. Due to

compression, the files are incomprehensible to the human eye when attempting to use

methods such as strings or hex editors that were successful in previous distributions of

Windows. A responder wanting to view the Windows 10 files will first need to decompress

them. Figure 8 shows the location of Prefetch files in the Windows Explorer.

Figure 8. Windows Explorer Prefetch Files.

f. Browser Artifacts

Browser artifacts are generated by user interaction and user profile activity on a

host system using Internet browsers. Common Windows 10 browsers as of the time of this

report include Edge, Internet Explorer (IE), Mozilla Firefox, and Google Chrome. Even

after a user clears a browser’s data using the built-in functionality within the browser, this

CuFA remains stored on the host system. The file format of this CuFA varies from browser

21

to browser. Examples of browser artifacts include cookies, browser search terms, uniform

resource locators (URL), email content, and date/time information.

Cookies are CuFAs that are stored on the host system and are sent to servers with

every request. Cookies are used for authentication and maintaining open sessions. Cookies

can thus provide insight into URLs that the host system had made requests for, as well as

when the host system made those requests. The WebCacheV01.dat file for IE11 and Edge

browsers stores this cookie data for both the IE and Edge browsers. Google Chrome and

Mozilla Firefox both store cookies in SQLite database format. The locations for these

various files are shown in Table 4 [9].

 Locations of Common Browser Cookie File Paths. Adapted from [9].

Browser File Path
IE11 %USERNAME%\AppData\Local\Microsoft\Windows\WebCache\

WebCacheV01.dat
Edge %USERNAME%\AppData\Local\Microsoft\Windows\WebCache\

WebCacheV01.dat
Firefox %USERPROFILE%\AppData\Roaming\Mozilla\Firefox\Profiles\.default\

cookies.sqlite
Chrome %USERPROFILE%\AppData\Local\Google\Chrome\User Data\Default\

cookies.sqlite

Both the WebCacheV01.dat file for IE11 and Edge browsers, and the associated

registry for IE11, store a list of the most recent URLs or file paths that were typed into

these browsers. Google Chrome and Mozilla Firefox both store typed URLs in SQLite

database format. This information is presented in Table 5. This CuFA can support an

investigation by establishing whether a user visited (or intended to) a particular URL.

22

 Locations of Browser History Locations. Adapted from [9].

Browser File path/registry
IE11 %USERNAME%\AppData\Local\Microsoft\Windows\WebCache\

WebCacheV01.dat
 HKEY_CURRENT_USER\Software\Microsoft\Internet Explorer\

TypedURLs
Edge %USERNAME%\AppData\Local\Microsoft\Windows\WebCache\

WebCacheV01.dat
Firefox %USERNAME% \AppData\Roaming\Mozilla\Firefox\Profiles.default\
Chrome %USERNAME%\AppData\Local\Google\Chrome\User Data\Default\

History.sqlite

g. DLLs

DLLs provide functionality to programs by promoting efficient memory usage and

reduced disk footprint [9]. DLLs cannot operate in their own address space; instead they

require a host such as an EXE or an ASP.NET file to invoke (call) them. DLLs contain no

entry point instruction; therefore, they cannot instantiate themselves. The only difference

between a DLL and an EXE file is the presence of an entry point in the Microsoft

intermediate language (MSIL). Because of this characteristic, multiple host programs can

concurrently utilize the same DLL. When a DLL is called by a consumer program, the OS

follows an order of operations to retrieve the required DLL. Table 6 presents this order of

operations [16].

For both Windows store and desktop applications, the Windows OS checks for the

events listed in Table 6 [16]. If the OS cannot find the required DLL, it will execute the

standard DLL search order dependent upon the application type—Windows Store or

Desktop—as shown in Table 7 and Table 8.

23

 Initial DLL Search Criteria. Adapted from [16].

Search Order Criteria
1 Is there a DLL with same module name already loaded into

memory? The system uses the DLL loaded into memory.
2 Is the DLL in the list of known DLLs? The system uses its copy of

the known DLL regardless of any path listed. Known DLLs are
stored at registry key: HKEY_LOCAL_MACHINE\SYSTEM\
CurrentControlSet\Control\Session Manager\KnownDLLs.

 Windows Store Application Standard DLL Search Order. Adapted from
[16].

Search Order Location
1 The package dependency graph of the process
2 Directory path the process was called from
3 %SYSTEMROOT%\system32

 Desktop Application Standard DLL Search Order. Adapted From [16].

Search Order Location
1 System directory utilizing the path returned from the

GetSystemDirectory function
2 The 16-bit system directory 32-bit systems (C:\Windows\System) 64-

bit systems (not supported)
3 Windows directory utilizing the path returned from the

GetWindowsDirectory function
4 The current directory.
5 PATH environment variable; default value:

(%SYSTEMROOT%\system32;%SYSTEMROOT%;%SYSTEMRO
OT%\System32\Wbem;%SYSTEMROOT%\System32\
WindowsPowerShell\v1.0\)

If an attacker were to gain access to any of these directories, malicious DLL

execution or DLL code injection is possible. Load-order-hijacking takes advantage of the

standard DLL search order to allow an attacker to load and execute malicious logic under

a known DLL.

24

2. Users

Users are both a predictable and unpredictable element in host security. From an

attacker’s perspective, users can be predictable in their usefulness in launching an attack.

From a network defense perspective, users can be unpredictable in their ability to follow

best security practices. Users are known to install unauthorized software, initiate

connections with rogue servers, and release insider information regarding security

practices to outside sources. This is not to say that users are intentionally malicious or

negligent, but rather that users are one of the easiest delivery vectors into a network from

an attacker’s perspective. User interaction (whether known by the user or not) with a host

can be identified by analyzing their logon times and logon types (e.g., remote or local).

Current logon information can be retrieved by determining if at least one token

exists for a given session’s locally unique identifier (LUID) [9]. A token, or more

specifically an access token, is generated by a user logon process native to Microsoft

Windows. MSV1_0, the native authentication package on a standalone system not

connected to a Windows domain, or Kerberos, the native authentication package on

systems connected to a Windows domain; generate a LUID and call Lsass.exe locally, or

on a domain server, respectively. The Lsass.exe process creates a handle that is passed to

Winlogon.exe. Winlogon.exe runs Userinit.exe which, among other tasks, starts

explorer.exe (the user interface). The locations of Winlogon, Lsass, Userinit, and Explorer

is shown in Table 9. Current logon artifacts can be mined by logically parsing for the owner

of process explorer.exe. However, this will only show interactive users with an

explorer.exe process, and no other logon types [9].

 Locations of Logon Processes. Adapted from: [9].

Process Native File Path
Winlogon.exe %SYSTEMROOT%\System32\winlogon.exe
Lsass.exe %SYSTEMROOT%\System32\lsass.exe
Userinit.exe %SYSTEMROOT%\System32\userinit.exe
Explorer.exe %SYSTEMROOT%\explorer.exe

25

A logon can be conducted by more than just a human user. System services also

perform logons. A type 2 (interactive logon) is indicative of a human user logging on to a

machine locally (the user is physically co-located with the machine) [17]. The classes of

logons, along with a brief description of each, are listed in Table 10. Logon artifact tracking

is further discussed in the “Logs” section.

 Windows LogonTypes. Adapted from [17].

LogonType Description
2 Interactive Occurs when a local user logs on to a system and interacts.
3 Network Occurs when a user accesses shared resources such as making an

SMB connection for file sharing.
45 Batch Occurs for scheduled tasks.
5 Service Occurs for services and service accounts that start services.
7 Unlock Occurs when a user returns to a logon and unlocks.
8 Network

Cleartext
Occurs by logons that are executed over the network and are
authenticated with lightweight directory access protocol (LDAP).
This method passes the username and password in the clear.

9 New
Credentials

Occurs when an application is “RunAs” a user, such as “RunAs”
Administrator.

10 Remote
Interactive

Occurs when an RDP application like Remote Assistance access a
system.

11 Cached
Interactive

Occurs when a mobile user uses a cached credential to logon
when no domain controller is available.

3. Processes

A process is a program in execution, and is composed of one or more threads, but

is started with a single thread (primary thread) [18]. A thread, within a process, is a portion

of the process that can be called for execution. “A process has a virtual address space,

executable code, open handles to system objects, a security context, a unique process

identifier, environment variables, a priority class, and minimum and maximum working

set sizes” [9]. Processes deliver the functionality of applications and services. This is a very

simplified view of Windows processes. The examination of processes can aid the IR in

identifying programs and services that are running on a host system.

26

a. Running Process-Related Information

Processes are identified by a unique number known as the process identification

(PID) [18]. The OS keeps track of a process tree that indicates the various parent-child

relationships among all the processes running. The IR can utilize this information to trace

through the hierarchy of processes and possibly identify deviations from what is normal.

Additionally, processes have associated handles. A handle allows processes to interact with

objects, such as files, threads, tokens, and registry keys. By noting which handles are

associated with each process, the IR can uncover detailed information regarding which

registry keys, files, and other system resources a process interacted. Programs such as

Process Explorer [19] or Process Hacker 2 [20] allow the IR to view processes, threads,

handles, and strings in memory, in order to assist with the analysis of system activities

leading up to, and during, a CIRCE.

b. DNS Cache

The DNS cache can provide artifacts related to the hostname(s) that an attacker or

their malicious logic (malware) connected to, or attempted to connect to. This information

can be retrieved by parsing memory strings associated with the svc.exe process, which

hosts the DNS cache service and can be observed in Figure 9, Figure 10, and Figure 11.

The IR can obtain similar data by executing the native CLI command, “ipconfig

/displayDNS” and outputting the results to a file [9]. Figure 9 presents a display of svc.exe

in the Process Hacker 2 program [20]. One can see how this information could be useful

for the IR seeking deeper insights about running processes beyond those provided by the

native CLI command “task list.”

Figure 10 presents a view of the process svc.exe, which was assigned the PID 2956,

in Process Explorer. Process Explorer allows the IR to view the threads of running

processes [19]. We can see that the DNS cache service is running under this scv.exe

process.

27

Figure 9. Process Hacker 2 Display of svchost.exe.

Figure 10. Process Explorer Display of DNS cache Service

28

Figure 11 presents a view of the memory strings within svc.exe with pid 2956 in

Process Hacker 2 [20]. Inside these strings, multiple DNS cache entries that have been

stored in memory can be seen. These entries are volatile and will flush once the host system

is restarted.

Figure 11. Process Hacker 2 Display of Memory Strings from svc.exe.

4. Registry

The registry is the primary location for configuration of the OS and applications

that run on top of the OS. The registry is made of six core binary files called “hives” [9].

The hives are listed in Table 11. The boot configuration data (BCD) file holds information

about the OS, invokes the boot loader, and then initiates the Windows kernel upon boot up

of the system. The remaining five active “live” registry hives that are viewable within the

Windows API have access restrictions put in place by the OS for security purposes and

present collection concerns for the IR. Static registry files residing on hard drives can be

viewed in their full file structure. However, certain keys that may have been modified

during runtime, are not saved to these hard drive (resident) registry hives when the machine

is powered off. For example, the Hardware subkey viewable in Figure 12, is not available

when the Windows OS is powered off [9]. Conversely, the SAM subkey is not available

29

when the Windows OS is powered on [9]. It is important for the responder to keep these

issues in mind, so that he or she may obtain desired volatile registry artifacts when and

where they are available.

The registry is organized in a hierarchical structure. Figure 12 shows the structure

of the registry inside the program. We will utilize the terminology described in this figure

from this point forward in the report.

 Registry Structure. Adapted from [9].

File Path
\Boot\BCD
%WINDOWS%\System32\Config\SYSTEM
%WINDOWS%\System32\Config\SOFTWARE
%WINDOWS%\System32\Config\SECURITY
%WINDOWS%\System32\Config\SAM
<profiles>\<username>\NTUSER.DAT

Figure 12. Registry Terminology.

30

By examining specific value data within registry subkeys, an IR can recover OS

information, evidence of OS tampering, indications of the use of malicious PowerShell

scripting, indications of persistence mechanisms, and much more. It would be easier to list

all of the data that an IR could not uncover from the Windows registry, than to list what

they could.

The registry uses the FILETIME format that is used throughout the NTFS file

system. This is an 8-byte value used to display what the date/time is. Windows 10 added a

new subkey called “TypedURLSTime,” and its structure is shown in Figure 13 [9]. The

value data (in hex format) of the value names associated with this subkey can be seen in

the figure. These values represent the number of 100-nanosecond intervals from January

1, 1601, Greenwich mean time (GMT) to the local time [9]. To convert this time to the

correct time of access for the specific value name, the IR must adjust, as appropriate, to the

time zone (regional) setting used on the system being investigated.

Figure 13. TypedURLSTime Subkey.

31

The time zone settings for a Windows host can be found in HKLM\SYSTEM\

ControlSet001\Control\TimeZoneInformation, and an example of this is highlighted in

Figure 14 [9]. The “TimeZoneInformation” value will be necessary when trying to analyze

any other date/time values in the Windows registry, as most values are based on the offset

of GMT to this TimeZoneInformation data value.

Figure 14. TimeZoneInformation Value Name.

5. Accounts

It is important for the IR to identify unauthorized accounts or unauthorized changes

to legitimate accounts. Accounts have attached privilege levels and concomitant access

rights that should be managed following the principle of least-privileged. When a user

attempts to access areas or objects that are outside of his or her account-defined privilege

level, this may be of investigatory interest. The IR should consult with the organization’s

documentation for authorized users and their corresponding privilege levels and group

memberships. Account activity of interest includes account accesses outside of normal

access times, concurrent account usage on multiple host systems, and administrative

changes from non-administrative accounts. User accounts are stored locally in the security

account manager (SAM) or in active directory (AD) in a domain environment [9]. Account

activity can be audited and tracked via event logging. A list of native CLI commands to

enumerate account configuration are listed in Table 12.

32

 Account Artifacts. Adapted from [9].

Information PowerShell
Current user interacting C:\> whoami
User accounts active or not on the local
hosts

C:\> Net users

Shows local accounts in the
Administrator’s group

C:\> Net localgroup administrators

Shows group accounts in the
Administrator’s group

C:\> Net group administrators

Shows all user accounts on host with
logon requirement information

C:\> Wmic useraccount list

Shows all groups on the host C:\> Wmic group list
Shows all user accounts on the host
with a count of bad password attempts

C:\> Wmic netlogin
getname,lastlogon,badpasswordcount

6. Network Configuration and Connectivity Information

Obtaining the current network configuration and the network connection history

can offer valuable investigative insights derivable from knowing what remote systems an

attacker may have established a connection to. Network-related information of

investigatory interest including SSIDs, domain names, and gateway MAC addresses can

be found at the registry directories listed in Table 13. A list of native CLI commands to

enumerate network configuration information is provided in Table 14.

 Location of Network History Directories. Adapted from [9].

File Path
HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\NetworkList\Profiles
HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\NetworkList\
Signatures\Unmanaged
HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\NetworkList\
Signatures\Managed
HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\NetworkList\Nla\Cache

33

 Network Configuration Information Commands. Adapted from [9].

Information CLI Command
Lists network connections and their associated
processes

C:\> netstat -naob

Lists current network routes C:\> netstat -nr
Lists the hosts address resolution protocol (ARP)
table

C:\> arp -a

Lists the hosts IP Addresses/Network IDs C:\> ipconfig/all
Lists DNS queries C:\> ipconfig /displaydns
Lists wireless Connections C:\> netsh wlan show interfaces
Lists all recent wireless connections C:\> netsh wlan show all

a. Active Network Connections and Related Processes

Network connections are made by processes and programs on the host system.

Correlating processes to network connections is extremely useful to the IR. By identifying

what processes and programs are making outbound connections, the IR can identify

command and control (C2) to/from malicious logic, the exfiltration of sensitive data, and

malicious actor interaction. The native CLI command “netstat -b,” as shown in Figure 15,

will provide a view, in memory, of what processes are making outbound connections from

the host [9].

Figure 15. Console Output of Netstat -b Output.

34

b. Machine and OS Information

Obtaining specific local host system information can present the IR with a wealth

of key information before conducting any further information gathering. Without some

specific system information, such as local date and time and system/software version

information, it may be more arduous to construct a timeline of events later in the

investigation. Table 15 presents a sample collection of specific system information that can

be obtained.

 Machine and OS Information Commands. Adapted from [9].

Information CMD
Local date and time C:\> echo %DATE% %TIME%
Hostname C:\> hostname
System information C:\> systeminfo
OS and version C:\> ver

C:\> systeminfo | findstr /B /C:”OS Name” /C:”OS
Version”

Installed application versions C:\> wmic product get name,version
Default path C:\> echo %PATH%

7. Task Scheduler

The task scheduler allows users and the OS the ability to perform routine tasks on

a regularly scheduled basis or at some particular future time. Tasks can be initiated by a

specific set of criteria [21]. This is an important artifact in reactive analysis in order to

prevent or stop persistence mechanisms on a host system. This is an important artifact in

proactive analysis in that the typical user does not initiate scheduled tasks. Any newly

created scheduled tasks not created by authorized administrators or software should be

scrutinized.

Configuration data for scheduled tasks is located in file and registry paths shown in

Table 16. Scheduled tasks are stored in “.job” files which are a Microsoft proprietary

format [21]. These files can be analyzed in a hex editor or viewed with the “strings” CLI

command. These files can also be later parsed with tools specifically designed to

35

deconstruct and interpret “.job” files. The “.job” files and associated event logs are all

important CuFAs for the IR to collect.

 Locations of Scheduled Tasks. Adapted from [9].

File/registry path
%SYSTEMROOT%\System32\Tasks
%SYSTEMROOT%\SysWow64\Tasks
HKLM\Software\Microsoft\Windows NT\CurrentVersion\Schedule\Taskcache\Tasks
HKLM\Software\Microsoft\Windows NT\CurrentVersion\Schedule\Taskcache\Tree

8. Logs

The event logging service in Windows records events that occur as a result of

numerous activities on the host system. Logs present the IR(s) with the information needed

to build a timeline of events that have taken place or are currently taking place. With the

ability to see a roadmap of activity, the IR(s) can reactively investigate known or suspect

CIRCEs by threading together relevant and related logged events. Once attacker tactics (or

tools), techniques and procedures (TTP) are reactively identified for a known CIRCE,

responders can create IOCs utilizing pertinent log data in order to proactively search for

other instances of same or similar activity on other systems. Logs are capable of being

deleted or modified by the attacker or his malicious logic; therefore, care should be taken

to protect the integrity and availability of the log collection and storage process. Also, logs

alone may not be sufficient to prove a CIRCE has occurred. It is up to the investigation

team to analyze logged data and to verify its relevance in helping to discover the who,

what, when, where, why or how of any given CIRCE. This section presents useful

information in log analysis by enumerating the locations of log entries that we have

assessed to be the most useful in response to a CIRCE. This assessment is based on a

collection of artifact analysis publications that we have surveyed [22], [23], [24]. Logs

obtained from process tracking are not covered, as they have a low signal to noise ratio

(SNR) and are more cumbersome to the IR than beneficial in performing initial triage. The

Return on investment of sifting through the thousands of processes generated on a host

machine (i.e., the low signal of artifactual data gleaned from the high noise generated by

36

the logs) does not justify, for the initial responder, the storage space of these logs nor the

processing power required for logging each process. These—process tracking—logs are

beneficial to the IR, only when the use of remote logging and a SIEM are used to filter out

the high volume of “noisy” events.

Windows 10 OS stores logs in the %SYSTEMROOT%\System32\Winevt\Logs

directory in binary XML format on systems not using remote log forwarding [9].

The majority of events are logged in either the system, application, or security

event logs. However, the Windows OS has over 185 logs by default in the

%SYTEMROOT%\System32\Winevt\Logs directory [9]. These additional logs are stored

under applications and services, and provide more granular/detailed information about a

specific application or service than do the native (system, security, and application)

Windows logs.

Windows logging presents many considerations for the incident response team.

Logging is a reactive analysis tool, and must be set up on the host/network prior to an

investigation of a CIRCE. Default settings in Windows 10 do not provide the IR with all

the most useful log information that would be desired or required in the investigation of a

CIRCE. Windows 10 provides a default log size of 20MB for the security log [9], which

introduces the risk of relevant logs being overwritten. Additionally, audit policy settings,

shown in Figure 16, which are not enabled by default, could provide the IR the ability to

track account logon events, object accesses, and processes as well as other events. These

logging considerations must be taken into account by the network owner prior to the

CIRCE and the IR during the investigation of the CIRCE. In this section we will identify

event logs, some default and some not, that provide the responder the most useful

information for investigating a known or suspected CIRCE.

37

Figure 16. Local Security Policy Audit Policy.

a. Account Activity Logs

Malicious actors need to obtain access to systems. One—perhaps main—method

of access entails direct logon to an account. Another main method involves various forms

of input logic that—through myriad techniques—return privileged shell access to the

perpetrator, but that is not our focus in this section. Enumeration of a user’s privileges or

password can be the first sign of an attempt to uncover current user settings and privileges.

A typical follow-on activity would then be to either impersonate a legitimate account (e.g.,

via discovered password) or escalate the privileges of an account. Table 17 shows some

typical log entries that capture this type of behavior. Changes in user accounts through

account management, which can result in log entries such as those displayed in Table 18

can point to an attempt to elevate a user’s privilege level on the host system or across the

domain. Account usage events can point to unauthorized access of a user account.

 Account Enumeration Event IDs. Adapted from [24].

ID Log Description Default
4797 Security An attempt was made to query the existence of a blank

password for an account
Yes

4798 Security A user’s local group membership was enumerated. Yes
4799 Security A security-enabled local group membership was

enumerated
Yes

38

 Account Management Event IDs. Adapted from [24].

ID Log Description Default
4720 Security A user account was created Yes
4722 Security A use account was enabled Yes
4724 Security An attempt was made to reset an account’s password Yes
4725 Security A user account was disabled Yes
4726 Security A user account was deleted Yes
4727 Security A security-enabled global group was created Yes
4728 Security A member was added to a security-enabled global group Yes
4729 Security A member was removed from a security-enabled global

group
Yes

4730 Security A security-enabled global group was deleted Yes
4731 Security A security-enabled local group was created Yes
4732 Security A member was added to a security-enabled local group Yes
4734 Security A security-enabled local group was deleted Yes
4735 Security A security-enabled local group was changed Yes
4737 Security A security-enabled global group was changed Yes
4738 Security A user account was changed Yes
4741 Security A computer account was created Yes
4742 Security A computer account was changed Yes
4743 Security A computer account was deleted Yes
4754 Security A security-enabled universal group was created Yes
4755 Security A security-enabled universal group was changed Yes
4756 Security A member was added to a security-enabled universal group Yes
4757 Security A member was removed from a security-enabled universal

group
Yes

4758 Security A security-enabled universal group was deleted Yes

Account logon and logon events are recorded in the security log on the system that

performs the authentication. For a SAM (local) logon, the information will be stored on the

host client. For a logon to a domain using Kerberos as the authentication method, the logon

information will be stored on both the local host and the domain controller responsible for

Kerberos. The pertinent point is that logon information is likely to be found in more than

one location. This is an important concept for the IR(s) to understand. Account logon logs

of interest are presented in Table 19. Of note are the new “Logon Info Field” sub-fields

that are present in Windows 10 Event 4624 (An account was successfully logged on),

presented in Table 20. These “Logon Info Fields” can reveal elevated token usage by an

39

attacker. This information is important when attempting to narrow down a time period of

malicious activity.

 Account Logon and Logon Event IDs. Adapted from [24].

ID Log Description Default
4768 DC:security A Kerberos authentication ticket (TGT) was requested Yes
4769 DC:security A Kerberos service ticket was requested Yes
4771 DC:security Kerberos pre-authentication failed Yes
4776 DC:security The domain controller attempted to validate the

credentials for an account
Yes

4624 Security An account was successfully logged on Yes
4625 Security An account failed to log on Yes
4634 Security An account was logged off Yes
4647 Security User initiated logoff Yes
4648 Security A logon was attempted using explicit credentials Yes
4672 Security Special privileges assigned to new logon Yes
4776 Security The domain controller attempted to validate the

credentials for an account/ or a local NTLM-based
authentication occurred

Yes

4778 Security A session was reconnected to a Window Station Yes
4779 Security A session was disconnected from a Window Station Yes

 Windows 10 Added Logon Information. Source: [25].

Logon Info Field Description
Restricted admin mode Normally “-.” This mode was created to protect

administrator accounts, ensuring that credentials are
not stored in memory on the remote host. This logon
mode aids in preventing attack techniques such as pass-
the-hash. If the remote login account is using
Restricted Admin Mode

Virtual account Applicable to services set up to logon with a “virtual
account”

Elevated token “Yes” or “No.” If the user is a member of
Administrators group. When an admin has UAC
enabled. When the Admin logs in, two login sessions
occur—One with the administrators SID and one
without. All activity is performed under the
unprivileged SID until an operation is run with a UAC
dialog box. In the event log two logon events will be
present, one with “Yes” and one with “No.”

40

b. Application, Processes and Service Logs

Much of WinOS-directed malicious logic relies on Windows services for

execution. Windows OS records events that relate to the starting and stopping of services,

to include the event log service itself. Services are often used by malicious actors to

establish persistence under a privileged account. The IR(s) can search the service event log

IDs between a specific period of time to see what services were started, terminated,

stopped, changed, or installed in temporal conjunction with the report of a known or

suspected CIRCE. The Windows services logs most likely to be of interest to the IR are

presented in Table 21

 Windows Services Event IDs. Adapted from [24].

ID Log Description Default
6005 System The event log service was started Yes
6006 System The event log service was stopped Yes
7034 System A service terminated unexpectedly Yes
7036 System A service was stopped or started Yes
7040 System The start type for a service was changed Yes
7045 System A service was installed by the system Yes

c. Wireless LAN (WLAN) Logs

Man-in-the-middle attacks using rogue access points are a popular vector of entry

for malicious actors. Logs for WLANs can be found in the following directory [9]:

%SYSTEMROOT%/System32/winevt/Logs/Microsoft-Windows-

WLANAutoConfig%4Operational.evtx. WLAN logs of interest are presented in Table 22.

 WLAN Event IDs. Adapted from [24].

ID Log Description Default
8001 WLAN

operational
WLAN service has successfully connected to a
wireless network

Yes

8002 WLAN
operational

WLAN service failed to connect to a wireless
network

Yes

41

d. Scheduled Task Logs

If object access auditing is enabled (it is not by default), the security log will contain

events related to scheduled task activity as presented in Table 23. Additional logs contain even

greater detail. Microsoft-Windows-TaskScheduler\Operational.evtx replaced SchedLgU.txt

from previous versions of Windows [21]. If history is enabled in the Task Scheduler, then

activity related to scheduled tasks on the local host will also be located in the task scheduler

event log found at: %SYSTEMROOT%\System32\Winevt\Logs\Microsoft-Windows-

TaskScheduler\Operational.evtx The task scheduler operational log contains more detailed

information for the IR to include the account used to schedule the task, and the account

assigned to the task [9].

 Scheduled Task Security Event IDs. Adapted from [24].

ID Log Descripting of Event Default
4698 Security A scheduled task was created No
4699 Security A scheduled task was deleted No
4700 Security A scheduled task was enabled No
4701 Security A scheduled task was disabled No
4702 Security A scheduled task was updated No
106 Task scheduler operational A scheduled task was created No
140 Task scheduler operational A scheduled task was updated No
141 Task scheduler operational A scheduled task was deleted No
200 Task scheduler operational A scheduled task was executed No
201 Task scheduler operational A scheduled task was completed No

e. PowerShell Logs

PowerShell remoting is enabled by default in Windows 10 for members of the

administrators and remote management user’s groups [9]. PowerShell remoting is meant

for administration of the network and can be an extremely flexible and useful tool for

system administrators. However, this tool is used frequently by malicious actors for lateral

movement, domain escalation, and domain dominance. PowerShell logging is not enabled

by default, but can be enabled through Group Policy settings on the domain controller for

the Windows 10 host [22]. PowerShell logs can be found in the following directory:

%SYSTEMROOT%/System32/winevt/Logs/Microsoft-Windows-PowerShell%

42

4Operational.evtx. PowerShell remoting requires authenticated access and can be

associated with a specific account logon event. PowerShell logs of interest are presented

in Table 24.

 PowerShell Event IDs. Adapted from [22].

ID Log Descripting of Event Default
4103 PowerShell operational Pipeline execution No
4104 PowerShell operational Script block logging entries No
400 PowerShell operational Start of command execution or session No
800 PowerShell operational Pipeline execution details No

43

III. POWERSHELL

PowerShell¸ an object-based command-line-shell and scripting language built on

the .NET framework was originally designed as a tool to automate many Windows

administrative tasks. The “shell” in PowerShell refers to the implementation whereby a

user dictates commands (at the command line or GUI), and these commands are then

received and interpreted by the shell for tasking of the OS [26]. These commands can also

be presented by the user in the form of a script. What makes PowerShell so powerful, is

that it takes a traditional shell and adds the extra functionality of creation. PowerShell

provides the end-user access that goes beyond that of the traditional GUI. When presented

with an infected host PowerShell offers a lighter touch approach when searching for and

analyzing artifacts that may be indicative of a CIRCE. Additionally, PowerShell enables

the IR to, not only search for, but also identify, parse, and cross-reference data that might

have otherwise gone uncorrelated.

PowerShell incorporates both a command-line-shell and a scripting language [26].

A shell by itself presents the user with an interface that allows for the implementation of

utility functions offered natively as part of the OS. PowerShell builds upon the OS and

provides greater capability than just running executables, or fetching data from a file or

folder at the traditional command line interface (CLI,). The end-user, with a PowerShell

prompt, can now control a diverse array of the Windows OS's system-level utilities and

key servers, such as Microsoft Exchange [26].

Because PowerShell was built on the .NET framework, it can be “considered a

programming language” [27]. The .NET framework is Microsoft’s software development

framework that provides a controlled programming environment where software can be

developed, installed, and executed. Two parts of the .NET framework that PowerShell

takes advantage of that the CLI cannot are 1) the CLR framework, and 2) the .NET class

library [28]. The runtime environment provides “all necessary services and support to the

processes involved in the execution of the application or program,” such as sending

“instructions or commands to the processor,” and providing access to other system

resources that might not be possible otherwise [29]. The CLR manages the execution of

44

any code that uses the .NET framework. The CLR allows for PowerShell code to be

portable to other machines, so long as the appropriate .NET framework, modules, and OS

are installed on those other machines.

PowerShell has access to the .NET framework class library. The .NET framework

class library is object-oriented, providing object types from which PowerShell code can

derive extra functionality. A class describes some generalized object (i.e., a table), and

contains all the properties that the generalized object (table) can have, as well as a way to

act upon (e.g., view or change) those properties. This latter aspect of a class (ability to

affect properties) is referred to collectively as “methods." An object is an instance of a

actual class definition; (e.g., a table containing one hundred account records that—itself –

may later become part of a larger database object). Stated another way, a class is akin to a

house’s blueprint; it defines the structure, but is not the actual structure. Following this

analogy, an object would be an actual house that was built using the class blueprint.

Object types describe the “type” of object that is being worked with, for example,

an integer or a string. Object-oriented programming focuses on the object that is to be

manipulated, rather than the programming logic that is required to manipulate it. A user

can manipulate the properties of the object by directly utilizing the methods that were

designed for this purpose. Since PowerShell is object-based, it can identify all the potential

objects that might need manipulation depending on the intended objective.

PowerShell is now included as part of the Windows OS. Note, that the ensuing

descriptions of PowerShell TTP apply to PowerShell version 5.0 and the .NET framework

version 4.5 that come standard with the Windows 10 OS.

A. CMDLET STRUCTURE

PowerShell employs a different set of commands than the native OS CLI. It uses

commands known as cmdlets. PowerShell cmdlets provide a powerful way to analyze

various Windows OS CIRCE artifacts. Cmdlets are single-function commands which “are

comprised of instructions designed to perform a function that returns a .NET object” [30].

A cmdlet’s power lies in implementation in combination with various methods, parameters,

and options [31]. By design, these cmdlets have access to many system administration tasks

45

that the Windows GUI does not. Cmdlets may provide access to functions that even the

traditional CLI does not. It is important to have a basic understanding of the structure of

standard PowerShell cmdlets used in a typical Windows 10 environment.

“Cmdlets follow a verb-noun structure” [31]. In the cmdlet, the verb is used to

indicate a desired action from the OS, for example, read or write. The noun represents the

object of interest, such as “computer, file system, disk, processes, event logs,” etc. [31].

A noun is always an object in the .NET class[26]. For example, “Get-Process,” instructs

the OS to get every individual process and output a list of all processes that are running on

the machine.

When viewing a cmdlet alone, or cmdlets as part of a larger script, the repetition of

a few key structural items (i.e., the specification of variables, piping of commands, and

outputting the results to a location) are present. Knowing the correct use of those key

structural items can provide clarity of function when viewing or writing cmdlets/scripts

Variables are specified through the use of the “$” character; more specifically

$ proceeded by the name of the variable [26]. The variable is then set equal to a value

(i.e., $<variable name> = <value>). For example, $money = 1 sets the value of the variable

money to 1. After the variable, “$money” has been defined in either an instance of

PowerShell or as a global variable in a script, it can then continue to be called

(or referenced). Environment variables are the exception, and do not require defining

within PowerShell to be called.

Environment variables represent some aspect of the Windows environment, such

as “what directory to install files in, where to store temporary files, and where to find user

profile settings." These variables, collectively, help define the environment in which

programs run on your computer [26]. PowerShell allows a variable to be called directly

from the environment. The environment variable can be represented as

“$env:<environment variable name>” [26]. Representing an environment variable in this

manner in the script eliminates the need to create a variable and set it equal to the

environmental variable value. Instead, the environment variable is called directly from the

46

Windows environment (e.g., $env:computername calls an environment variable that

contains the hostname of the computer that the command was issued to).

Piping is a powerful feature of the cmdlet. It provides the ability to take outputs

from one invoked cmdlet and pass (pipe) that information into another cmdlet for additional

processing [11]. A pipe is represented by the “|” symbol [26]. Piping is useful when large

quantities of data require sequential processing through multiple functions (i.e., searching

for a particular date within a range of dates, and then requiring a specific formatting style

for the output of that date).

B. IDENTIFYING PROMINENT WINOS 10 ARTIFACTS USING
POWERSHELL

Using PowerShell, we demonstrate the enumeration and analysis of principle

artifact types maintained by the Windows 10 OS IOCs. A majority of DoD’s client systems

have some version of the Windows OS installed; moreover, Windows 10 is the mandated

OS for the majority of DoD systems [32]. There are various ways PowerShell can be

utilized to collect IOC-worthy artifact data from these, and other segments Windows 10

OSs. This data, in turn, aids the IR in making the initial determination that a CIRCE has

occurred. Security policies on endpoint (host) systems can be difficult to enforce due to the

broad nature of host activities. Opening unsecured emails with malicious attachments,

visiting potentially dangerous websites, and telecommuting are just a few examples of a

host reaching beyond the security of the internal network and its array of perimeter-based

defenses. Therefore, the ability to detect any indicator artifacts on these endpoint hosts is

key to detecting, investigating, containing, and responding to CIRCEs when the

prevention-oriented perimeter defenses fail.

IDS and IPS solutions rely on known signatures, and as a result, can be bypassed

using an unconventional attack vector or other modification to the known signature.

Modern attack vectors are designed to bypass traditional detection methods, compromise

a host, maintain a presence, and remain undetected. “Incidents identified internally tend to

have a much shorter dwell time” than incidents that are reported from external sources [33].

PowerShell gives a Tier 3 IR a tool to verify whether the indications of a potentially

47

compromised host are valid or not. Using PowerShell to search the common artifact areas

of a host for CuFAs will likely leave a smaller footprint than using a traditional GUI tool.

This—smaller footprint—is important, as the IR prefers to alter as little data as possible on

the host during the investigation.

The scope of this capstone recognizes eight categories of OS-related artifact sources

that provide good candidate indicators for detecting, verifying, and investigating CIRCEs.

We have chosen to focus solely on emphasizing PowerShell cmdlets and scripts that would

enable rapid access to select artifacts from among the eight categories. We further

narrowed the selection of cmdlets and scripts to those that could be easily understood and

implemented by the IR. Identification of a CIRCE, preservation of data (especially

volatile), and the submission of an informative initial report are the primary goals for the

IR. For all the previous reasons, we have chosen those scripts offering the highest SNR, as

it pertains to quickly identifying those indicators that have traditionally been high

probability indicators of malicious activities. PowerShell helps to achieve these goals, and

do so with minimal disturbance to the system. Furthermore, the information gathered from

our selection of scripts should enable the IR to provide a more informative initial report.

Finally, it should be highlighted that using PowerShell to extract and save volatile artifacts

that may otherwise be lost provides the next tier (Tier 2) IR with a much larger data set

with which to conduct more detailed forensic analysis.

The CJCSM [1] makes a distinction between the nature of investigation/analysis

conducted during Phases 2 and 4 of a CIRCE investigation. This distinction is partially

explained via this CJCSM sentence, “An event cannot be determined to be an incident until

some preliminary analysis is done to assess and validate the event against the criteria for

determining if it is an event” [1]. The IR conducting the Phase 2 tasking of preliminary

analysis and identification needs to identify and assess sufficient system artifacts to

validate, with some certainty, that a CIRCE has occurred. The IR will also want to preserve

as much volatile data as possible for more in-depth analysis at a later time; should the

circumstance (e.g., the severity of the compromise) warrant such. We demonstrate, in some

of cmdlets and scripts, how the IR can direct the output of cmdlets/scripts run to a file.

These files can be included in a report to the CSSP IR.

48

There are multiple ways to open PowerShell in Windows 10 OS; one such way is

to execute the PowerShell executable file from within a system command prompt. Doing

so will change the prompt, noted by the “PS” proceeding the current environment path, as

seen in Figure 17.

Figure 17. Entering PowerShell.

By default, Microsoft restricts users from running all script files (e.g., .ps1, psm1,

and .psd1 files) [30]. In order to load and execute PowerShell scripts, the default execution

policy must be changed from Restricted to AllSigned, RemoteSigned, Unrestricted,

Bypass, or Undefined [26]. To change the execution policy, use the verb-noun combination

“set-executionpolicy” followed by the desired execution policy (e.g., set-executionpolicy

RemoteSigned)

For educational purposes, we present most of the output from cmdlets and scripts

on the console, in figures. However, often there is too much information to analyze at the

console, and in those cases, it is recommended to pipe the output to a comma separated

values (CSV) or text file.

1. Machine and OS Information

A thorough report regarding a possible (or known) compromised system should

include basic information about the system. Taking note of the machine and OS details will

provide a snapshot of the state of the machine and OS that may be needed for reference

later. Similarly, vulnerabilities that are specific to the machine and OS can be researched

and reported as well. The IR can use the verb-noun combination Get-Ciminstance to

49

retrieve information from the common information mode (CIM) server. The user can

request the Win32_Operating system object. Further parsing of this object can provide an

output that displays only the information relevant to the current query.

• Objective: Filter specific OS object parameters (Figure 18).

Figure 18. Filter Specific OS Objects.

• Objective: Get the IE version number (Figure 19).

The IR can use the verb-noun combination Get-ItemProperty to display the item

properties of an object (i.e., path, child path, parent path, and versioning). The output

presented in Figure 19 displays the IE version number directly from the Windows registry.

Various versions of IE are prone to specific known vulnerabilities if not properly patched.

Figure 19. Console Ouput of Get-ItemProperty

2. Files

Observable file creation, modification, or deletion could offer a lead to the IR in

support of an investigation. A host’s directory structure could potentially be extremely

large, and difficult to parse. Using PowerShell an IR can quickly and efficiently search

for suspiciously named files, specific file extensions, and hidden files. To obtain a listing

of files within PowerShell, the IR can use the verb-noun combination Get-Childitem.

To obtain a hierarchical folder structure of the host, the IR can use the native CLI

command, “tree.”

50

• Objective: List a hierarchical tree of files and folders without the hidden
attribute (Figure 20).

Figure 20. Console Output of CLI Tree Command.

• Objective: List files and folders with the hidden attribute (Figure 21).

Figure 21. Console Output of Contain the Hidden Attribute.

51

• Objective: List potentially malicious file types from the C:\ Users
directory (Figure 22).

Figure 22. Console Output of Malicious File Type Query.

a. Open Files

Open files on a system suspected of anomalous behavior may represent potential

sources of exploitation, especially when viewed in correlation with an alert. For example,

malicious macros may have been embedded in a Word document and executed when a user

opened the file or document. The IR can use the native CLI command, “open files” to

display open files on the local host. This command requires open file auditing enabled in

order to run.

52

• Objective: View open files, to include files opened remotely via local
share points (Figure 23).

Figure 23. Console Output of Open Files.

b. Open Shares

File shares are a network connection target for exploitation by a malicious actor.

File shares do not have to be logically mapped, but a user with appropriate privilege level,

and knowledge of the share name can access the share remotely. This is essentially a vector

for an attacker to transport information (exfiltrate) from one host to another, unseen.

These available file shares are also known as, open shares. A malicious open share

could be identified by the following traits: the share was not created as part of the network

baseline, the share does not have a logical path (i.e., drive letter), or the share is not

secured sufficiently.

The IR can use the verb-noun combination, Get-SmbShare. This cmdlet, without

parameters, lists all shares connected to the local machine. The IR can use the

-IncludeHidden parameter to include hidden shares as well as shares that are not logically

mapped. The Get-SmbShareAcess cmdlet outputs the access control permissions for a

particular open share.

53

• Objective: View open shares on the local host (Figure 24).

Figure 24. Console Output of Open Shares.

• Objective: View access permissions of a specific open share on the local
host (Figure 25).

Figure 25. Console Output of Open Share’s Access Permissions.

c. Mapped Drives

Logical drives are accessible by the WinAPI. However, some drives are can only

be enumerated with the assistance of PowerShell (e.g., certificate, function, and alias drives

as well as the registry HKLM and HKCU drives) [9]. The IR can view a list of logical,

temporary, and persistent drives that are mapped to or associated with a location in a data

store with the verb-noun combination Get-PSDrive. Mapped drives may be artifacts that

are desirable locations for a malicious actor to obfuscate malicious files, tools, or

persistence mechanisms.

54

• Objective: Obtain logical drives and drives mapped to network shares on
the local host (Figure 26).

Figure 26. Console Output of Get-PSDrive.

d. Jump List

Custom Jump List files (custDest) can be inspected by the IR with PowerShell using

the “strings” CLI command; however the OLE CF formatted automatic Jump List files

(autoDest) are incomprehensible to the human eye when attempting to use methods

such as strings or hex editors that were successful in previous distributions of Windows.

These volatile artifacts do however contain a large set of data that could be forensically

useful in the construction of a timeline of recent activity on the host. If a CIRCE is

identified, these Jump List files could prove to be invaluable to the higher echelon Tier 2

IR. Using the Get-Childitem cmdlet and piping the output to a variable, the IR can store

the username of each user in the C:\Users directory. Combined with the “robocopy”

command, the IR is able to piece together a script that can quickly copy all of the Jump

List files on a host before they are removed by the system.

55

• Objective: Extract all Jump List (autoDest and custDest) files for all user
accounts on the local host (Figure 27).

Figure 27. Output to File Jump List Query.

e. Prefetch Files/ Timestamps

Much like automatic Jump List files, the contents of Prefetch files (*.pf) are

incomprehensible to the human eye when attempting to view with generic tools such as

strings or hex editors. These files contain such investigation-worthy items as timestamps,

AppIDs, execution paths, and DLLs called [15]. The IR can view a listing of Prefetch files

in the %SYSTEMROOT%\Prefetch directory using the Get-Childitem cmdlet. The CLSID

associated filename alone can provide the IR with enough data to correlate a timeline of

events. A malicious executable in the startup files may correlate to a Prefetch file, which

may, in turn, point to a malicious DLL called by that executable; all of which have MAC

timestamps associated with them.

56

• Objective: List Prefetch Files (Figure 28).

Figure 28. Console Output of Prefetch Files.

• Objective: Copy all Prefetch folder contents to a compressed archived
directory (Figure 29)

Figure 29. Console Output of Compress-Archive.

f. DNS Cache

The IR may need to query entries in the DNS cache to enumerate sites accessed

that could lead to the source of malicious code download. The IR should look for IP

57

resolution to nefarious or malicious sites. The IR can use the verb-noun combination Get—

DnsClientCache to enumerate the DNS cache.

• Objective: Display DNS cache entries (Figure 30).

Figure 30. Console Output of DNS Cache Entries.

3. Users Logged-On

The IR should look to see if there are local or remote account logons, and determine

processes and services owned by those accounts. Although, unlikely to lead to a definitive

CIRCE conclusion—i.e., whether one did or did not occur—on its own, logon information

can be correlated with other collected artifacts to aid in making this determination. The IR

can utilize the verb-noun combination Get-WmiObject and request the

Win32_LogonSession object. Further parsing of this object can provide an output that

displays only the information relevant to the current query.

58

• Objective: Query for current logons and SIDs associated with logons on
the local system (Figure 31).

Figure 31. Console Output of Current Logon.

4. Logs

The IR should save and review pertinent log information related to a possible

CIRCE. The IR can minimize noise by removing repetitive log entries of routine traffic by

utilizing the built-in querying abilities of PowerShell. Logs are useful to the Tier 3 IR(s)

for the purpose going backwards in time to reconstruct the actions that occurred before and

during the CIRCE. Rather than examine every log entry, the IR can utilize logs to develop

theories and leads regarding what occurred and analyze logged events to confirm or

disprove those theories.

a. Relevant Security and Event Logs

Investigation of alerts from the three Windows OS native event logs (security,

application, and system) as well as applications and services logs may provide broad

indicators that a CIRCE has occurred. Correlation of events between logs can assist in

timeline reconstruction and a stronger CIRCE declaration—i.e., yes, we are certain one

occurred.

The IR can utilize either the verb-noun combination Get-WinEvent or Get-

EventLog. Get-WinEvent has the capability to retrieve events from the applications and

services logs (i.e., PowerShell, scheduled tasks, and antivirus logs); whereas Get-EventLog

cannot [26].

59

• Objective: Query logon and logoff events on within the last seven days
(Figure 32).

Figure 32. Console Output of Logon and Logoff Events Query.

• Objective: Query failed logons (Figure 33).

Figure 33. Console Output of Failed Logon Query.

• Objective: Query the system and security logs for a, “cleared log” event
ID (Figure 34).

Figure 34. Console Output of Cleared Event Logs.

60

b. Anti-virus Applications and logs

Identifying attempts to subvert host-based security mechanisms, such as the local

anti-virus or firewall utilities, can help the IR detect malicious activity. The IR may need

to identify modifications to the firewall that may “allow persistent tools a means of inbound

or outbound communication.” [34]. If firewall auditing is enabled, the event will be logged

regardless of the firewall being turned off. Additionally, a firewall rule that is tripped or a

Windows Defender threat rule that is tripped could provide a lead toward point of entry

from a malicious actor. The IR can use the verb-noun combination Get-MpThreatDetection

to display threat data that has been identified by the antivirus on the local host. The IR can

use the verb-noun combination Get-NetFirewallProfile to display all firewall profiles on

the host. The IR can use the verb-noun combination Get-FirewallRule to query all firewall

rules. Further parsing of these objects can provide an output that displays only the

information relevant to the current query.

• Objective: Query the firewall profile configurations on the local host
(Figure 35).

Figure 35. Console Output of Firewall Profile Configurations.

61

• Objective: Query the firewall rules for rules containing the string
“Microsoft*” on the local host (Figure 36).

Figure 36. Console Output of Firewall Rule Query.

• Objective: Query for firewall rule adds, changes, and deletions
(Figure 37).

Figure 37. Console Output of Firewall Adds, Changes, and Deletions Query.

62

• Objective: Query for active and past malware threats detected by
Windows Defender (Figure 38)

Figure 38. Console Output of Threat Detection Query.

5. Processes

The IR can query process information in order to trace through the hierarchy of

processes and possibly identify deviations from normal host behavior. Additionally, an IR

can enumerate handles to identify processes interacting with malicious objects, such as

files, threads, tokens, and registry keys.

a. Running Process and Related Information

The IR can query for processes running on a host system utilizing the verb-noun

combination Get-Process. The IR may sort the output of Get-Process in order to analyze

processes of interest (e.g., sorting by start time, elapsed running time, or by resource

consumption).

63

• Objective: List all active processes on localhost (Figure 39).

Figure 39. Console Output of Active Processes.

• Objective: Filter processes and sort them by the start time parameter
(Figure 40).

Figure 40. Console Output of Get-Process Filtered by Start Time.

64

b. Running Services

The IR can search for services running on a host to identify services started (or not

started) maliciously. The IR can query to identify all the services that are required to run

prior to starting a particular service. Additionally, the IR can identify the account that

started a particular service. The IR can use the verb-noun combination Get-Service to

identify all services on a host. The IR can also use the verb-noun combination Get-

WMIObject and request the Win32_Service object. Further parsing of this object can

provide an output that displays only the information relevant to the current query.

• Objective: List running services on the local host (Figure 41).

Figure 41. Console Output of Running Services.

65

• Objective: List service and account that started the service on the local
host (Figure 42).

Figure 42. Console Output of Account that Started a Service.

c. Suspicious Dynamic Link Library (DLL) Execution

The IR should investigate any DLLs that may be tied to malicious code or process.

Suspect DLL’s launched as a result of malicious code may often be useful to the IR in order

to correlate the source of persistence, exfiltration, or network connection.

• Objective: List DLLs, to include file path, loaded by a specific process
(Figure 43).

Figure 43. Console Output of DLL Files for a Process.

6. Registry

a. Relevant Registry Locations

Identifying registry changes, as a result of malicious action, is key to verifying that

a compromise has occurred. Once an attacker gains entry to a system, it is necessary for

them to maintain access (persistence). For example, modification of registry keys can cause

a malicious application start during the OS boot sequence or during a specific account

logon. Common areas for malicious persistence can be searched using the verb-noun

combination Get-ChildItem. The IR can enumerate the properties of a specific registry key

with the verb-noun combination Get-ItemProperty.

66

• Objective: Query the HKLM Run and RunOnce sub-hives (Figure 44).

Figure 44. Console Output HKLM Run and RunOnce Sub-hives.

• Objective: Query the Microsoft.Powershell item properties (Figure 45).

Figure 45. Console Output Microsoft.PowerShell Properties.

b. Startup Applications

Startup applications may be located in a variety of different locations on a host.

These are locations on the system (file system or registry) where references to executables

exist that allow processes to be started without user interaction (beyond booting the system

or logging in). The IR should investigate any lead(s) that point to persistence mechanisms

or malicious code execution by startup applications. The IR can use the verb-noun

combination Get-CimInstance and request the Win32_StartupCommand object. Further

parsing of this object can provide an output that displays only the information relevant to

the current query.

67

• Objective: List startup applications (Figure 46).

Figure 46. Console Output of Startup Applications.

7. Accounts

The IR should inspect for newly added administrator accounts. The IR should query

for modified access rights that may represent an escalation of privilege. Accounts logging

on at uncharacteristic times, a spike in account activity outside of normal baseline activity,

and multiple account lockouts can point toward compromise. Malicious actors look to gain

access to privileged user accounts. Changes in the normal behavior of privileged user

activity such accessing various systems, the creation of new admin accounts, or reinstating

disabled or stale domain administrator accounts can also be indicative of a compromise.

The IR can use the verb-noun combination Get-LocalUser or- Get-CimInstance and request

the Win32_userprofile object. Further parsing of this object can provide an output that

displays only the information relevant to the current query.

68

• Objective: Enumerate all user profiles on the host system (Figure 47).

Figure 47. Console Output of User Profiles on The Host (Client) System.

8. Network Configuration and Connection Information

The IR can often identify malicious activity happening in real-time or before it

happens by identifying processes making abnormal network connections. This information

is volatile and will often will not reoccur/persist once a host has been shut down or

restarted. The IR can use the verb-noun combination Get-NetTCPConnection. Further

parsing of this object can obtain an provide that displays only the information relevant to

the current query.

• Objective: List established and listening network connections and
associated processes (Figure 48).

Figure 48. Console Output of Network Connections and Associated Processes.

69

9. Tasks Scheduled

The IR can examine scheduled tasks on a host to determine if there is malicious

code awaiting execution. The IR can use the verb-noun combination Get-ScheduledTask

to query for scheduled tasks to include the path, name, and state of the task. The IR can

obtain further information to include date and time of last execution, next scheduled run

time and date, and number of missed runs with the verb-noun combination Get-

ScheduledTaskInfo.

• Objective: List scheduled tasks that have the string “update” in the task
name (Figure 49).

Figure 49. Console Output of Scheduled Tasks with Update in the Task Name.

• Objective: List scheduled task info for scheduled tasks in the \Microsoft\
Office\ task path (Figure 50).

Figure 50. Console Output of Scheduled Tasks in the \Microsoft\Office\ Task Path.

70

THIS PAGE INTENTIONALLY LEFT BLANK

71

IV. CHOOSING A “NOISY” ATTACK/COMPROMISE

We chose an attack that would generate multiple artifacts from among the

FULPRANT eight categories, which could later be investigated by an IR. The attack was

conducted against a host called Victim-PC, which resided inside of a Windows domain

environment. The attack was conducted from a host called Attack-PC, which resided

outside of the Victim-PC’s Windows domain environment. The Windows domain called

Polinaise.local, included a domain controller, DC1; advanced threat analytics (ATA)

server, ATA; and two host machines, that will be referred to as Victim-PC and Admin-PC

which are listed in Table 25. The ATA server was used as a confirming source that the

Victim-PC was actually logging expected discoverable events in real time while the attack/

compromise was being conducted. The Admin-PC held elevated domain administrator

credentials in memory, created and stored on the DC1 server, which were remotely

exfiltrated from the Victim-PC during the attack.

 Polonaise Network and Host Environment Information.

Fully qualified domain name (FQDN) OS
DC1.Polonaise.local Windows Server 2012 R2
ATA.Polonaise.local Windows Server 2012 R2
Admin-PC.Polonaise.local Windows 10 Professional 10,0.17134
Victim-PC.Polonaise.local Windows 10 Professional 10,0.17134
Attack-PC Kali Linux 2018.3 Rolling release

The users, to include relevant attack/compromise related group membership and

background information, are listed in Table 26. A visual depiction of the user and host

environment is presented in Figure 51.

72

 Polonaise User Account Information.

User Accounts Group membership Background
Franz
Liszt

FranzL (local)
FranzL (domain)

Victim-PC: Admin Unprivileged user in the
Polonaise domain.

Fred
Chopin

FredC (local)
FredC (domain)

Admin-PC: Admin
Domain: Domain Admins

Domain administrator in
the Polonaise domain.

Jack
Turner

JackT (local)
JackT (domain)

Domain: Help Desk
Administrators

Help desk team member in
the Polonaise domain.

Figure 51. Polonaise User and Host Environment.

A. CONSTRAINTS AND CONSIDERATIONS

When choosing events for the attack/compromise, we considered two industry

standard offensive cyber chain concepts, the cyber-kill-chain [35] published by Lockheed

Martin Corp and the Microsoft-attack-kill-chain [36]. The cyber-kill-chain offers a macro

conceptualization of a cyber-attack on an entity by depicting the attack in seven stages

(reconnaissance, weaponization, delivery, exploitation, installation, command and control

(C2), and actions on objectives). The Microsoft-attack-kill-chain offers a micro

conceptualization of a cyber-attack on an entity by depicting the specific actions that would

likely occur within the “exploitation” phase of the cyber-kill-chain. The actions are divided

73

into two main phases, low-privilege lateral movement cycle and high-privilege lateral

movement cycle. Our attack objectives reside within the low-privilege-lateral movement

cycle, and include: external reconnaissance, compromised machine, internal

reconnaissance, local privilege escalation, compromise credentials, admin recon, remote

code execution, and Domain Admin credentials. We created an adaptation of the two

offensive cyber chain concepts, depicting only the phases of our focused attack cycle,

which can be seen in Figure 52.

Figure 52. Attack Phase Chain Concept. Adapted from [35] and [36].

B. EXECUTION OF THE ATTACK/COMPROMISE AND ARTIFACT
GENERATION

Our attack/compromise was conducted in three stages:

• Stage 1 Reconnaissance and exploitation

• Stage 2 Lateral movement

• Stage 3 Domain escalation

For each stage, we give a technical explanation of actions by the attacker as well as

a summary of artifacts created by those actions.

74

1. Reconnaissance and Exploitation

During Stage 1 of the attack, we assumed that external reconnaissance had been

conducted and that the attacker had uncovered information about a general user on the

network, Franz Liszt. We assumed that the attacker had generated a targeted phishing email

attack against the fictitious user Franz Liszt. We assumed the attack vector to be a malicious

email with an obfuscated hyperlink description that called back to the Attack-PC which is

“waiting” on an established TCP port.

a. Attacker Actions

We simulated that an attacker exploited the Victim-PC from the Attack-PC using

the Metasploit module, “windows/local/bypassuac_comhijack.” This exploit bypassed the

Windows UAC for the local account FranzL. Since the FranzL account was assigned to the

Local Admin group on user Franz Liszt’s personal workstation, we were able create

component object model (COM) handler entries in the “HKCU\Software\Classes\CLSID”

registry hive using this user’s escalated UAC Admin token. When the appropriate high-

integrity process, seen in Figure 53, was loaded, the registry entry “HKCU\Software\

Classes\CLSID\{0A29FF9E-7F9C-4437-8B11-F424491E3931}” was able to influence

the InprocServer32 key during the DLL search priority. This resulted in the high-integrity

process loading a maliciously injected DLL. The DLL was stored in the Temp directory

for the user account FranzL. The DLL contained the payload that resulted in an elevated

privilege session.

75

Figure 53. Victim-PC Exploitation from the Attack-PC.

A Meterpreter session, hosted in memory, was established between the Attack-PC

and the Victim-PC as a result of the phishing email attack conducted. As seen in Figure 54

we added a non-privileged local-user account, Jackattack via the Meterpreter session

between the Attack-PC and Victim-PC. We simulated the attacker creating the account as

a persistence account on the Victim-PC.

Figure 54. Victim-PC Malicious Account Added.

If the attacker were to lose access to the Victim-PC at this stage in the attack/

compromise, he would lose his foothold in the network. The initial incursion into the

network, which resulted when user Franz Liszt clicked on a malicious link in a phishing

email, would have to be repeated in order to regain entry into the target network via the

Victim-PC. We simulated that the attacker executed the Meterpreter persistence script in

order to have a way back into the target network should the Victim-PC be shut down or

76

lose power. The Meterpreter persistence script was initially written to “C:\Users\FranzL\

AppData\Local\Temp\” directory, and then removed by a command executed via

Meterpreter. The Meterpreter persistence script installed a “callback” to the Attack-PC into

the “HKLM\Software\Microsoft\Windows\CurrentVersion\Run\” registry hive. After the

registry value had been implanted, any subsequent restart of the Victim-PC would initiate

a TCP connection back to the Attack Machine with system level account privileges.

In order to identify the current user’s group permissions, and any additional users

assigned to administrative level groups, we simulated that the attacker conducted domain

user enumeration from the Attack-PC. The attacker utilized the security account manager

remote (SAM-R) protocol to query the DC1 server for user and group information. This

technique was executed from the non-privileged user account FranzL. The SAM-R

protocol commands that were executed are listed in Table 27. The commands required only

that the account issuing them be an authenticated domain account.

 Attack Commands Used to Obtain User and Group Information.

User enumeration PowerShell commands executed from the Victim-PC
Net user /domain
Net group /domain
Net group “enterprise admins” /domain
Net group “domain admins” /domain

The enumerations resulted in the identification of three additional user accounts

(i.e., in addition to the already compromised FranzL account), as well as a list of domain

groups in the Polonaise domain. This information can be seen in Figure 55. The attacker

was further able to identify that the user account FredC belonged to the Domain Admin

group in the Polonaise domain, as shown in Figure 56.

77

Figure 55. Attack Enumerated Domain Groups and Users.

Figure 56. Attack Enumerated Domain Admins.

At this period in the attack, the attacker had access to Victim-PC through the logon

access of the FranzL account. The attacker also implanted a malicious user account—

Jackattack—for the purpose of persistence. The attacker added an autorun persistence

mechanism to reconnect to the Victim-PC should access to the network become

disconnected. A visualization of the state of the attack following Stage 1 is depicted in

Figure 57.

72

 Polonaise User Account Information.

User Accounts Group membership Background
Franz
Liszt

FranzL (local)
FranzL (domain)

Victim-PC: Admin Unprivileged user in the
Polonaise domain.

Fred
Chopin

FredC (local)
FredC (domain)

Admin-PC: Admin
Domain: Domain Admins

Domain administrator in
the Polonaise domain.

Jack
Turner

JackT (local)
JackT (domain)

Domain: Help Desk
Administrators

Help desk team member in
the Polonaise domain.

Figure 51. Polonaise User and Host Environment.

A. CONSTRAINTS AND CONSIDERATIONS

When choosing events for the attack/compromise, we considered two industry

standard offensive cyber chain concepts, the cyber-kill-chain [35] published by Lockheed

Martin Corp and the Microsoft-attack-kill-chain [36]. The cyber-kill-chain offers a macro

conceptualization of a cyber-attack on an entity by depicting the attack in seven stages

(reconnaissance, weaponization, delivery, exploitation, installation, command and control

(FranzL)

MainRTR

(FredC) ATA.Polonaise.local

79

ported from the Attack-PC to the Victim-PC are listed in Table 28. Following the transfer

of the tools, we simulated that the attacker utilized the ported tools and native CLI

commands to harvest credentials and then authenticate with those harvested credentials via

a logon session with the Admin-PC.

 Attack Tools and Scripts Ported from the Attack-PC to the Victim-PC

Tool / Script Description
Netsess.exe Command line tool to enumerate NetBIOS SMB sessions on local

and remote hosts [37] .
Mimikatz.exe Tool used to extract plaintext passwords and Kerberos tickets in

memory in order to perform pass-the-hash and golden ticket
exploitation [24].

Powersploit.psm1 A collection of scripts used by attackers to perform many tasks, to
include, reconnaissance from a victim host [38].

PSexec.exe A tool packaged in Microsoft’s Sysinternals software suite that
allows a user to launch interactive command prompts on remote
hosts [39].

a. Attacker Actions

We simulated that an attacker searched for a logon session for at least one of the

Domain Admin group accounts by conducting server message block (SMB) enumeration

utilizing the opensource tool, Netsess [37]. The Netsess tool requires only an authenticated

account on the domain to execute, and utilizes the NetSessionEnum API call. This API call

is used to enumerate open SMB sessions against an SMB server [40], which was the DC1

server in the Polonaise domain. All user accounts establish an SMB session with the

domain controller in order to download group policy information [40]. Because the Victim-

PC operated in a domain environment, the attacker was able to enumerate the account

information shown in Table 29.

 Attack NetSessionEnum Enumerated Account Information.

Domain user Hostname
FredC Admin-PC
FranzL Victim-PC
Administrator DC1

80

We simulated that an attacker utilized native CLI command line tools and

Mimikatz.exe to dump all the “logonpasswords” data in memory on the Victim-PC to

a text file local to the Victim-PC. The commands used and file created can be seen in

Figure 58.

Figure 58. Attack “Logonpasswords” Dump Commands Executed on Victim-PC.

We simulated that the attacker was able to uncover the NTLM hash of the helpdesk

user account JackT in memory. This account had been previously used to remotely logon

to the Victim-PC to investigate the phishing email associated with user account FranzL.

We simulate that the attacker used the Import-Module and Get-NetLocalGroup PowerShell

functions on the Victim-PC in order to run Powersploit.psm1 against the Admin-PC. This

led the attacker to realize that the JackT account was in the Polonaise domain Help Desk

group, and that the Help Desk group was a member of the Local Administrators group on

the Admin-PC.

We simulated that the attacker used an exploitation technique called over-pass-the-

hash. Over-pass-the-hash was conducted by taking the NTLM hash uncovered from the

credential dump and pasting it following the “/ntlm:” portion of the mimikatz.exe

command in Figure 59. This launched a command prompt with the JackT account

credentials loaded in memory. The attacker executed the command “dir \\Admin-PC\C$,”

and then executed the command “klist” which displayed all Kerberos tickets loaded in

memory on the Victim-PC. The JackT Kerberos ticket was then present as a result of over-

pass-the-hash.

81

Figure 59. Attack Pass-the-hash Commands Executed on Victim-PC.

At this period in the attack, the attacker had persistently available access to Victim-

PC and credentials to connect as a local administrator on the Admin-PC. A visualization

of the state of the attack following Stage 2 is depicted in Figure 60.

b. Investigation-worthy Artifacts Created

Though SMB traffic artifacts from the Victim-PC to DC1 would be detectable by

network traffic monitoring over segmentation points in the network, our research was only

focused on host-based artifacts.

“FirewallPolicy” registry entry, Prefetch, PowerShell Log, WMIC/Logon event ID,

and process creation/exit event ID artifacts were generated on the Victim-PC as a result of

the over-pass-the-hash and PowerSploit activity by the attacker.

Figure 60. Attack Stage 2 Depiction of the Noisy Attack/Compromise.

82

3. Domain Escalation

During Stage 3 of the attack, we simulated that the attacker harvested all the

Kerberos tickets in memory on the Admin-PC, remotely, by utilizing the Psexec.exe tool

and native CLI commands from the Victim-PC.

a. Attacker Actions

The attacker used the Windows native “xcopy” CLI command in order to port over

mimikatz.exe from the Victim-PC to the Attack-PC. Following the transfer of the tools, we

simulated the attacker utilizing the PSexec.exe tool to remotely execute the mimikatz.exe

tool on the Admin-PC from the Victim-PC. The Attacker dumped all the Kerberos tickets

on the Admin-PC into a text file within the “C:\ temp” directory and then used the “xcopy”

CLI command again to transfer the dumped credential text file back to the Victim-PC. The

commands used and file created can be seen in Figure 61.

Figure 61. Attack Kerberos Ticket Dump Commands Executed on Victim-PC.

At this period in the attack/compromise, the attacker possessed the Kerberos ticket

for the FredC account which was a member of the Domain Admins group on the Polonaise

domain. The attacker then would have gone on to use this ticket to access the DC1 domain

controller on the Polonaise domain in order to establish additional/deeper persistence,

create more domain admin accounts, disable domain admin accounts, escalate privileges

to the enterprise domain, or many other possible actions that would be available given the

privilege level of the exploited account. A visualization of the state of the attack following

Stage 3 is depicted in Figure 62.

83

Figure 62. Attack Stage 3 Depiction of the Noisy Attack/Compromise.

b. Investigation-worthy Artifacts Created

Registry key modification as well as process creation/exit event ID artifacts were

generated on the Victim-PC as a result of the Psexec.exe program.

We chose to conclude our attack/compromise scenario in the cyber-kill-chain

exploitation phase, as our objective of creating multiple artifacts in each category of the

FULPRANT eight for interrogation was met.

84

THIS PAGE INTENTIONALLY LEFT BLANK

85

V. EXAMPLE ANALYSIS SCENARIO

We chose to investigate the compromised host presented in Chapter IV (Victim-

PC), as a Tier 3 IR would; the IR investigating possessed only a PowerShell command

prompt and a few rudimentary PowerShell scripts. We started our investigation with a lead

provided by a fictitious user (Franz) within a fictitious organization (Polonaise) and

continued to follow leads that facilitated the confident validation (i.e., it was, or it was not)

of a CIRCE. It should be noted, that one researcher conducted the attack, and one researcher

conducted the analysis scenario, as a black-box exercise. The researcher conducting the

analysis scenario was provided only the virtual machines, user names, passwords, and

simulated help desk lead, in order to begin analysis and hunt.

In this chapter, we provide an overview of investigation and methodology, followed

by a step-by-step investigation and analysis of the “noisy attack” in Chapter IV, from the

perspective of a Tier 3 IR.

A. GENERAL INVESTIGATION/ANALYSIS METHODOLOGY

It is worth reminding the reader here what role the cyber first responder (i.e.,

CJCSM [1] Tier 3 responder) plays regarding the full life-cycle handling of a CIRCE. This

is –we think—best exemplified by the role a paramedic plays in the medical field. The role

of the paramedic is to quickly assess a reported situation, then take appropriate life-

preserving steps to stabilize any casualties. In fulfilling this preliminary response role, the

paramedic should take care to not cause any additional harm. Finally, we note that is it not

the role of the paramedic to fully understand the intricacies of any injuries, nor to alleviate

or fix those injuries.

In the CIRCE preliminary analysis presented in this chapter, we demonstrate—via

a contrived scenario—what an IR can achieve by utilizing PowerShell to investigate a host

and identify corroborating indicators of a CIRCE. Using PowerShell, the IR was able to

identify multiple indicator artifacts, validate that an incident (implied malicious activity)

occurred, deduce a probable attack timeline, salvage volatile data, and escalate the incident

to the next tier.

86

1. Preparation

Response preparation prior to a CIRCE is key. Everyone within the organization

should have the basic training to report suspicious activity as well as the knowledge of

whom to make an initial report to. The Tier 3 IR should be familiar with established

guidance, procedures, and policies. These basic preparation steps may seem trivial but will

“ensure all suspicious activity is detected and reported so that further analysis can take

place to determine if it is a reportable cyber event or incident” [1]. Having an incident

response plan at hand will assist in quick detection, eradication, and possible attribution.

Such a plan will aid in the preparation of a clear and concise incident response report,

which in turn will provide the Tier 2 IR(s) with greater situational awareness with which

to perform deeper analysis. Having this preparation along with a tested and documented

toolkit will guide the Tier 3 IR(s) to collect data and evidence in a more systematic and

confident manner [1].

2. Customer Complaints and Fact Gathering

A local network administrator may have the first interaction with a compromised

system. The network administrator may be presented with an alert or complaint that a

system is simply not functioning properly. The customer (network user) may provide

details; to include, events leading up to or a timeline of when they noticed abnormal

behavior on a system. Information provided by the user may be enough to alert a network

administrator that a system has potentially been compromised. Gathering relevant facts

from the user can assist in providing a lead from which to begin an investigation. Paying

attention to user observances can assist in the development of initial leads that the network

administrator—now acting in the capacity of an IR—can use to focus initial investigative

steps.

3. Investigation

In this chapter, we detailed a step-by-step methodology using PowerShell as a tool

to investigate a compromised host. The investigative methodology followed in this

scenario was to develop and follow leads that would facilitate the confident validation of

(i.e., it is, or it is not) a CIRCE, while also collecting and preserving forensically valuable

87

data along the way. We used a "light touch" to minimize unnecessary modification to, or

destruction of, potentially valuable artifacts. We simulated that the initial response to this

scenario took place with the IR physically in front of the compromised system. The IR

utilized both native and customized PowerShell functions.

4. Documentation

Once in the process of the initial investigation, documentation is important.

Documentation provides a clear record as to what has been accomplished and when it

occurred. While investigating, the IR does not know exactly where leads may take him or

her. What may at first appear to be a simple investigation may quickly become complex.

To avoid chasing blind leads or getting lost in the noise, it is important for the IR to identify

and document new leads, when they are presented. Documentation helps keep an

investigation on track, and is invaluable in providing needed history and situational

awareness to any new investigators who may be brought into a case. Good documentation

also serves to support evidence that may be introduced in a legal/court setting, and in

providing input to post-incident lessons-learned reviews.

B. THE CIRCE SCENARIO: STEP-BY-STEP

In our simulated analysis scenario, the network administrator onboard USS

Polonaise, Jack Turner, received initial complaints from user, Franz Liszt. Franz reported

that after completing his work on a Microsoft Excel spreadsheet, he began to notice a

slower-than-usual response from his workstation, Victim-PC. In response to Jack’s initial

fact-finding questions, Franz stated that during the same session on his computer he was

searching online, via Internet Explorer, for a Microsoft Excel template that he needed for

a project. Franz searched a Microsoft developer’s forum where he believed he had found a

suitable URL that would provide him the template that he needed. Clicking the link caused

the browser on the Victim-PC to crash. The user, Franz, continued to work, but noticed a

drop in the speed and performance of the host. Franz attempted to multiple restarts of his

host, Victim-PC, with no avail in alleviating the sluggish system. Jack believed, based on

this initial information, that Franz could have clicked on a malicious link. In the context of

our scenario; this is the point where a CIRCE detection (CJCSM Phase 1) is deemed to

88

have occurred. Jack knows that the easiest way to bypass a security firewall is to be

"invited" into the network inadvertently by a user who clicks on something untoward. Jack

believes the problem requires escalation and passes Franz Liszt’s trouble ticket to the local

Tier 3 IR. The following represents one possible sequence of steps dedicated to the

preliminary analysis and identification (CJCSM Phase 2) of this detected possible CIRCE.

Note that such an investigation for any given incident may proceed quite differently

depending on various incident peculiarities, and—perhaps most importantly—the

experience of the responder/investigator. Thus, the reader should not interpret the

following steps a being a "programmatic", rote, "always-do-this" sequence that should be

followed for any similar set of circumstances.

1. Accounts

The Tier 3 IR began her investigation by logging on to the Victim-PC as the FranzL

domain logon. The IR was aware that due to the close relative proximity of user Franz’s

issues to the investigative response, there was potential for a malicious connection to still

be established. The IR did not want to tip off any potential malicious actor by logging on

with new credentials. Logging on as the domain user that reported the problem also

prevents administrative credential harvesting should the malicious actor still be connected.

The IR began investigating by looking at the logons present on the Victim-PC. In Figure

63, we present the PowerShell command input which utilized Windows management

Instrumentation (WMI). This PowerShell cmdlet was used to determine the users with

logon sessions on the Victim-PC. The IR identified that the JackT domain help desk

account had a logon present on the host, indicating that the host has not been restarted or

shutdown since the JackT account logged on. The IR also identified that the FranzL domain

account had a logon present. Aside from Victim-PC’s standard local account (system, local

service, and network) logons, the anonymous logon could be indicative of malicious

credential use. However, at this stage in the investigation the IR was still investigating, and

had not yet seen enough indicators to categorize the CIRCE.

89

Figure 63. Investigation of Accounts Logged on the Victim-PC.

2. Files: Typed URLs

The user’s admission that the slowdown was triggered following the clicking

of a URL link in order to download the Excel template, provides a good lead for the

responder. Following up on this initial lead from the user, the IR enumerated

the typed URLS from the %USERNAME%\AppData\Local\Microsoft\Windows\

WebCache\WebCacheV01.dat file into a directory for later analysis during the incident

analysis phase. The IR executed the PowerShell Command, cp C:\ Users\

FranzL.POLONAISE\AppData\Local\Microsoft\Windows\WebCache\WebCacheV01.dat

C:\Artifacts\Web_URL\WebCaceV01_FranzL.dat

3. Network Connectivity

The IR leveraged PowerShell to enumerate all outbound connections from the

Victim-PC, and to cross-reference those connections with the resident processes that called

for their creation. The IR enumerated the network connections by utilizing a function

prepared prior to the possible CIRCE that utilizes the native CLI command, netstat -ano,

but also associates the ports (which can be associated with protocols), addresses, states of

connections, process names, and PIDs of the network connections. The function, Get-

NetworkStatistics, is presented in Figure 64 [41]. The output of the Get-NetworkStatistics

function ran on the Victim-PC by the IR is presented in Figure 65.

90

Figure 64. Get-NetworkStatistics Function Written in PowerShell 5.0. Adapted from [41].

Figure 65. Investigation of Output of Get-NetworkStatistics on Victim-PC.

91

After viewing the results, the IR immediately recognized that the Victim-PC was

making multiple connections out to a host (192.168.1.47) over non-standard client/server

ports (i.e., Victim-PC is connecting to the server 192.168.1.47 on ports 4444 and 8888).

The IR also recognized that those connections were being made from processes that

would be considered abnormal in typical host environments (mMmrJNpeOHVx,

something32, and rundll32). Based on this observation the IR deduced that unauthorized

traffic was leaving Victim-PC. The IR documented this activity and updated the initial

report to reflect the incident as CJCSM Category 5, non-compliance activity (event) [1].

4. Processes

The unfamiliar processes (something32, mMmrJNpeOHVx, and rundll32) created

a new lead for the IR. The IR looked at various run-time properties of those processes

(e.g., path, creation date, command line arguments, and executable path), which can be

seen in Figure 66, Figure 67, and Figure 68. The PowerShell command input used to view

these properties was: “Get-CimInstance Win32_Process -Filter “name= ‘<executable

name>’” | fl”.

Figure 66. Investigation of Something32.exe Get-CimInstance Command Output
on Victim-PC.

92

Figure 67. Investigation of mMmrJNpeOhVx.exe Get-CimInstance Command Output
on Victim-PC.

Figure 68. Investigation of Rundll32.exe Get-CimInstance Command Output on
Victim-PC.

The IR was able to garner two new leads worth pursuing. The first lead was a path

from which the processes executed, and the second lead was a date/time at which the

processes began. The leads are presented in Table 30.

93

 Investigation of Path and Creation Date of Possible Malicious Files.

ExecutablePath CreationDate
C:\ Users\FranzL.POLONAISE\AppData\Local\
Packages\Microsoft.MicrosoftEdge_8wekyb3d8bb
we\Tempstate\Downloads

2/16/2019 3:07 52 PM

C:\ Users\FranzL~1.POL\AppData\Local\
Temp\rad2BAE6.tmp\mMmrJNpeOHVx.exe

2/16/2019 3:17 46 PM

C:\Windows\System32\rundll32.exe 2/16/2019 4:30:57 PM

5. Files

The IR decided to investigate the C:\ Users\FranzL~1.POL\AppData\Local\Temp\

rad2BAE6.tmp\mMmrJNpeOHVx.exe file path using PowerShell. The IR enumerated the

C:\Users\FranzL.POLONAISE\AppData\Local\Temp directory shown in Figure 69. The

IR was able to identify multiple visual basic script (VBS) files as evident by the “.vbs”

extension shown in Figure 70. The IR was aware that VBS files often are used to obfuscate

malicious code. The “rad2BAE6.tmp” directory containing the mMmrJNpeOHVx.exe file

was no longer present on the Victim-PC when the IR investigated. However, the IR

discovered the file, something64.exe in the C:\ Users\FranzL.POLONAISE\AppData\

Local\Temp parent directory. something64.exe resembled the naming convention of the

previously discovered something32.exe process.

94

Figure 69. Investigation of Temp Directory Listing on Victim-PC.

95

Figure 70. Investigation of Temp Directory Listing Parsed for
VBS Files on Victim-PC.

The IR leveraged PowerShell to retrieve the MD5 hash for all VBS files for

submission in the initial CIRCE report. The VBS files were located in the C:\ Users\

FranzL.POLONAISE\AppData\Local\Temp directory, which can be seen in Figure 71.

File hashes are a CuFA that can later be used as an IOC to find the malicious files across

multiple hosts, even if the attacker has spoofed the name of the file to make it appear

legitimate.

Figure 71. Investigation of Hash of the Potentially Malicious VBS files on Victim-PC.

While the IR was updating her documentation, the Victim-PC rebooted without

local interaction to do so. The IR thus updated the report from Category 5, non-compliance

96

activity (event) to Category 2, user level intrusion (incident) due to malicious code that has

allowed interactive access to the compromised host [1].

6. Network Connections: Updated

After the system reboot, and following system logon, we simulated that the IR

utilized PowerShell to enumerate the network connections with the function Get-

NetworkStatistics [41]. The updated output of connections, processes, and state can be seen

in Figure 72.

Figure 72. Investigation of Updated Output of Get-NetworkStatistics function
on Victim-PC.

Following the updated enumeration of network connections, we simulated that the

IR immediately recognized multiple and similar connections to a host at IP address

192.168.1.47 over non-standard client/server ports (4443 and 4444). The IR also noticed

standard client/server relationship with the 192.168.1.47 host from the Victim-PC over port

443. The process associated with the traffic over port 443 appeared to be an atypical process

or program for using the secure https (443) protocol. The IR recognized that all connections

to the host at IP address 192.168.1.47, both prior to and after the reboot, were being made

from processes exhibiting unconventional naming conventions (e.g., qdqqtmxpRdC5,

something64, and KJrbEoDpdNKFwE). This lead gave the IR enough information to

deduce that the unauthorized traffic to/from the Victim-PC had been re-established after a

97

reboot. This lead was demonstrative of persistence behavior, which provides additional

corroboration of malicious design/intent.

7. Processes: Parent and Child Relationships

The IR enumerated processes running on the Victim-PC following reboot and logon

by utilizing a function that associates a child process with the parent process in an indented

listing (i.e., tree structure) format. The function, Show-ProcessTree, is presented in Figure

73, and a portion of the output is presented in Figure 73 [42]. The IR continued to follow

the lead of the malicious processes, and was able to work backwards to identify which

parent process spawned the malicious child processes.

Figure 73. Show-ProcessTree Function Written in PowerShell 5.0.
Adapted from [42].

98

Figure 74. Investigation of Process Tree Display of Something64.exe.

8. Files: MFT

We simulated that the IR continued investigating the lead from the potentially

malicious file, something64.exe. The IR used the “pipe” operation to filter the returned

objects from the cmdlet Get-ForensicChildItem to Get-ForensicFileRecord in order to

return the MFT record data for the something64.exe file [56]. This entry is important as it

contains relevant data, such as modified time, accessed time, changed time, and born time,

as seen in Figure 75. This Function is useful for the responder to detect a malicious action

called, “timestomping” a technique used by attackers to manipulate the various timestamps

maintained in the MFT for each file and directory. The IR was able to identify

timestomping to the something64.exe file based on the modified time, accessed time, and

changed time displaying an erroneous date of 1/1/1601, as seen in Figure 75.

Figure 75. Investigation of MFT Record of Something64.Exe

99

9. Correlation of data

At this point in the investigation, the IR was able to pause, take all leads and CuFA

gathered thus far, and correlate the data further by cross-referencing the data with data from

the Prefetch directory, which can be seen in Figure 76. The Prefetch information provides

ample data with which to populate an incident timeline. A junior member of the response

team could be tasked with constructing, or updating/maintaining the timeline. Such a task

should provide valuable experience for rookie incident handlers. A timeline for this

incident scenario as executed so far is presented in Table 31.

Figure 76. Investigation of Prefetch Files on Victim-PC

100

 Investigation of Timeline of Events Observed by the IR

Time Event
2/16/2019 4:13PM Ping.exe was run on the Victim-PC
2/16/2019 4:30 PM Multiple instances of Whoami.exe were run on the

Victim-PC possibly to support the detection of current
account name and privileges on Victim-PC

2/16/2019 4:31 PM RunDLL.exe was run on the Victim-PC. Pervious
analysis corroborates this and made a connection out to
192.168.1.47 with system level privileges

2/16/2019 4:36 PM Hostname.exe was run to detect the hostname of Victim-
PC

2/16/2019 4:36 PM PSEXEC.exe was run on Victim-PC
2/16/2019 4:40 PM XCOPY.exe was run on the Victim-PC
2/17/2019 1:10 PM KJRBEODPDNKFWE.exe was run on the Victim-PC.

Pervious analysis corroborates the process identified as
being started by something64.exe.

2/17/2019 1:13 PM QDQQTMXPRDCS.exe was run on the Victim-PC.
Pervious analysis corroborates the process identified as
being started by something64.exe.

2/17/2019 1:16 PM NETSESS.exe was run on the Victim-PC
2/17/2019 1:17 PM Hostname.exe was run to detect the hostname of Victim-

PC
2/17/2019 1:17 PM XCOPY.exe was run on the Victim-PC
2/17/2019 1:18 PM MIMIKATZ.exe was run on the Victim-PC

The IR recognized Psexec.exe as being a Microsoft Sysinternals tool used for

administrative purposes, and was able to identify that Psexec.exe was run on Victim-PC

through analysis of the Prefetch directory [39]. The Sysinternals software requires an end-

user license agreement (EULA) or software license agreement to establish a user's right to

use the software [19]. When the EULA is accepted following the first usage of the tool, a

registry entry is made in the corresponding user account’s HKU hive. In order to check the

HKEY_USERS (HKU) registry for EULA agreement acceptance, the IR required the SIDs

associated with the user accounts that had logged on to the Victim-PC. The IR used a

WMIC command to obtain a listing of user accounts and associated SIDs, as shown in

Figure 77.

101

Figure 77. Investigation of User Accounts and Associated SIDs

10. Registry

When searching the HKU registry under a SID associated with the FranzL.local

account, the IR was able to identify that the user account FranzL.Polonaise.local accepted

the EULA agreement for PSexec.exe, as shown in Figure 78.

Figure 78. Investigation of PSEXEC EULA Accepted by FranzL Account

The IR uncovered an additional lead while searching for user accounts and

associated SIDs. An Unauthorized local account, named Jackattack, was discovered and

can be seen in Figure 77.

11. Logs: PowerShell

The IR discovered AppIDs for programs that were not authorized for the Polonaise

network. The Prefetch directory contained AppIDs for MIMIKATZ, PSEXEC, XCOPY,

and NETSESS. The IR continued investigation of the AppID leads, and conducted a search

for the AppID names uncovered in the Prefetech directory within the PowerShell

102

operational log. The search results can be seen Figure 79. Often, attackers will use software

such as Mimikatz, Psexec, and Netsess remotely via PowerShell [22]. When the IR used

the search term, “MIMIKATZ” in the PowerShell logs, she discovered that Invoke-

mimikatz.ps1 was executed from a scriptblock, meaning the command was executed

remotely on another host, but the command was invoked (i.e., entered) from the Victim-

PC. The .ps1 file was located in the C:\ Windows\system32\WindowsPowerShell\v1.0\

Modules\PowerSploit\Exfiltration\ sub-directory of the System32 directory. Modification,

deletion, or addition of files within the System32 directory requires administrative

privileges, at a minimum. Thus, at this point the IR was sufficiently convinced of malicious

root-level access so as to update the report from Category 2, user level intrusion, to

Category 1, root level intrusion [1].

Figure 79. Investigation of Search Results for Mimikatz in the PowerShell
Operational Logs on Victim-PC

12. Logs: System

The Prefetch files provided the responder a timeframe to narrow her search of the

system logs. The IR then queried new services that were installed around the timeframe of

103

the documented malicious events. The IR observed that three new services had been

created: yhbqkh, ygegre, and mzwhs which can be seen in Figure 80. What most concerned

the responder was the Service File Name: cmd.exe /c echo yhbqkh \\.\pipe \ yhbqkh. This

is indicative of a pipe impersonation attack, where a file uses cmd.exe at the LocalSystem

privilege level, and instructs the system to install a service—through the pipe—running at

the LocalSystem privilege level [24]. Translation: an attacker has effectively escalated his

or her privileges even higher than root—all the way to system.

The IR queried the system (vice the security or application logs) event log for

service installation records utilizing the Get-WinEvent cmdlet. This was done in an effort

to uncover the installation of services initiating from the malicious executables on the

Victim-PC. In doing so, the IR uncovered three unrecognized services installed around the

timeframe of the documented malicious events. All three of the services are associated with

a cmd.exe going out to a named pipe. The odd (i.e., non-human-readable) service names

are indicative of a named pipe impersonation attack. An executable on the system creates

a pipe with a random name. In this attack scenario, the three odd services are named

yhbqkh, ygegre, and mzwhse, and can be seen in Figure 80. This naming convention will

vary and is not a good CuFA for IOC development; however, the string “cmd.exe /c echo

<string of six characters> \\.\pipe \<string of six characters>” would be CuFA that could

be used to search for this activity across multiple hosts [24]. This pipe is initially created

with the local system privilege level. The attacker then commands the system to connect

to the pipe and install a service that runs under a system account.

104

Figure 80. Investigation of Query for Services Installed on the Victim-PC

13. Logs: Security

The IR looked to see if any other event log entries might further reinforce her

investigative findings, or otherwise provide additional report-worthy information. Analysis

of the Security event log revealed a recent event ID 4732 where an unauthorized local user

account, Jackattack was added to a security-enabled local group by local user account

FranzL, as shown in Figure 81.

105

Figure 81. Investigation of Jackattack Account Was Added to a
Security-Enabled Local Group

14. Using CufA as IOC with PowerShell

The IR was able to identify a Category 1, root level intrusion, due to root level

interactive access to the Victim-PC [1]. At this point in the scenario the IR should have

high confidence that the initially detected possible CIRCE was—very likely to have been—

a confirmed Category 1 incident. The IR also had accrued a tidy collection of artifacts to

deliver to a Tier 2 CSSP in the form of a report. Tier 2 handlers would then conduct

additional analysis (CJCSM Phase 4) and direct response actions as they deemed

appropriate to the scope and severity of the incident.

This concludes our analysis scenario. At this point, our fictitious IR would have the

option—time and authority permitting—to perform additional investigation. Among other

options, additional investigation might entail using the various indicators discovered to

define custom IOCs. We present a sample script in Figure 82, which is comprised of a

menu that allows for IR-user interaction to call any or all of the various contained functions.

The functions presented in the sample script are similar and, in some cases, identical to the

functions used in the analysis scenario; with one major exception. The functions in the

sample script allow remote invocation of the functions. This would give the IR the ability

to take CuFAs identified on one host and turn them into custom IOCs in order to proactively

hunt across the network for similar intrusions.

106

Figure 82. PowerShell IOC Script

107

Figure 82 (cont’d.). PowerShell IOC Script

108

Figure 82 (cont’d.). PowerShell IOC Script

109

VI. CONCLUSION

Cyber incident response is comprised of the knowledge, skills, and abilities of

personnel armed with tools to accomplish common industry practice and techniques in

support of reporting on and recovering cyber systems. This research promotes one such

tool, PowerShell, in support of both the preliminary analysis and identification of incidents

(CJCSM Phase 2) and later incident analysis (CJCSM Phase 4) phases of the DoD incident

handling life-cycle. While incident response requires a multitude of tools, we focused on

presenting a cost-effective platform built into the OSs of most DoD networks that could be

leveraged to more promptly discover CuFAs in support of investigating potential CIRCEs.

A. SUMMARY

The CJCSM, which outlines the DoD incident handling program, defines the

requisite tasks associated with dealing with the life cycle processing of a detected cyber

incident or reportable cyber event (CIRCE) [1]. The primary foci of this capstone were

directed at two of the six life cycle phases enumerated in the CJCSM document:

preliminary analysis and identification (CJCSM Phase 2) and incident analysis (CJCSM

Phase 4). The Tier 3 IR(s) focus the majority of their efforts on information discovery and

preliminary analysis. The information presented in this report promotes the use of

PowerShell to enable more efficacious assessment of a suspect system's CIRCE-related

artifacts; so as to assist the Tier 3 responder with such discovery and analysis. We assert

that PowerShell, along with the training to employ it, the Tier 3 responder will be better

equipped to detect, report, and recover from host-based intrusions on Windows 10 OS.

The demonstration of PowerShell implementation that is provided in this research

could provide fleet personnel with an additional level of knowledge/capability that can be

added to any existing incident response methodology or toolset. We attempted to make it

evident that an IR, even one with limited PowerShell knowledge, could leverage the

information provided in this report to more promptly discover CuFAs conducive to both

an informative initial CIRCE report, and any IOC hunting that may ensue. Most Tier 3 IRs

function in the capacity of a shipboard or shore-based network administrator. It is important

110

that the Tier 3 IR not have to search for all artifacts possible, or even attempt to uncover

artifacts from every category of the FULPRANT eight artifact categories. Rather, it is our

assertion that the Tier 3 IR needs to pursue a leads-driven strategy in his or her

investigation. By following the most evident chain of leads, and developing an incident

timeline, the Tier 3 responder can more quickly identify CIRCE-relevant volatile artifacts

that may best inform initial response actions, and provide valuable insights for follow-on—

Phase 4—analysis. This early-in-the-life-cycle gathered data can be instrumental in

minimizing damage and expediting recovery from an incident.

In our analysis scenario, our fictitious IR performed no analysis of malware, scripts,

or network traffic. Instead the responder utilized PowerShell, a built-in utility, to examine

a suspicious host; much as a paramedic would examine the scene of an accident. By

identifying multiple CIRCE-related artifacts, the IR was able to quickly identify and

develop leads and deduce a timeline of probable events; again, much as a paramedic would

make an initial assessment of a victim before stabilizing the victim for transport to higher

level care.

We demonstrate in our analysis scenario that PowerShell provides the

knowledgeable user the ability to perform operations that are not only faster than traditional

menu-driven interaction, but also operations that are simply not available in any existing

user-accessible. PowerShell greatly aided our fictitious IR, not only in the detection,

verification and analysis of a system compromise, but also in the application of defining

IOCs to proactively search for other potential system compromises across the network.

B. FUTURE WORK

The primary research objective in this work was narrow in scope: Identify, how

PowerShell can be best utilized by the on-scene cyber IR(s) to both: a) perform preliminary

investigations of Windows 10 OSs that are suspect of being compromised, and demonstrate

how PowerShell can be used to conduct proactive threat hunting to identify compromises

of Windows 10 OSs not already suspect of being compromised. Likely candidates for

additional scenarios include: a) examining PowerShell application in other current and

future OSs (e.g., Linux, Apple, mobile, and support devices), b) creating additional incident

111

scenarios that require the IR to investigate known tactics and techniques of ATPs with

PowerShell, and investigate ATP PowerShell evasion techniques, c) adding additional

artifact types from the FULPRANT eight into the attack scenario, and d) focusing solely

on IOC development and PowerShell IOC hunting.

Microsoft released PowerShell Core 6.0 as an upgrade and replacement for

Windows PowerShell [43]; hence the removal of “Windows” from the tools name.

PowerShell Core runs on the new .Net Core rather than the .NET framework which is

proprietary to Windows OSs. Windows has released the PowerShell Core tool to be used

on MacOS, Linux, as well as an unsupported (as is) version of the tool for Windows ARM

and Rasbpian. With the release of PowerShell Core 6.0 it would be beneficial to apply the

techniques and methodologies presented in this work toward future work involving

PowerShell Core on both Windows 10 and other OSs.

Advanced persistent threats (ATPs) are malicious entities whom each have their

own unique set of TTPs. Cyber defenders can often emulate these TTPs in a training

environment for the purposes of expanding knowledge in order to identify, prevent, and

protect against ATP actors. It would be beneficial to analyze known ATP TTPs with

PowerShell for the purpose of identifying CuFAs for IOC generation.

This work examined a small subset of artifacts present in a malicious attack.

Different attacks will produce different artifacts and different leads. Future work could

focus on multiple attack profiles and demonstrate PowerShell scripting preparation for IOC

hunt operations for those attack profiles.

This work focused on demonstrating that IOC development and IOC hunting was

both possible and beneficial during the life-cycle processing of a CIRCE. Future work

could concentrate on IOC generation to include listing artifacts garnered from specific user

and system activity, coupled with a list of template-based IOCs from which an IR could

build a PowerShell hunt from. Furthermore, the creation of a PowerShell training

environment for IOC hunting could be beneficial to incident response personnel.

112

There is much that can be expanded upon beyond the scope of work presented here.

The use of PowerShell as an incident response tool offers the IR(s) the ability to cull some

artifacts that are incapable of being obtained by other tools in a timely manner, and the

ability to define custom IOCs to quickly search large networks. The merits of including

PowerShell in incident response tool kits warrants greater attention throughout the DoD.

113

LIST OF REFERENCES

[1] Joint Chiefs of Staff, “Cyber incident handling program” CJCSM, 2012,
Chairman of the Joint Chiefs of Staff, Washington, DC, USA, 2014 [Online].
Available: https://www.jcs.mil/Portals/36/Documents/Library/Manuals/
m651001.pdf?ver=2016-02-05-175710-897

[2] J. D. Fulp, “CJCSM 6510.01B Cyber Incident Handling Program,” Lecture
presented at CS4684 Cyber Security Incident Response and Recovery course,
Naval Postgraduate School, Monterey, CA.

[3] V. S. Harichandran, D. Walnycky, I. Baggili, and F. Breitinger, “CuFA: A more
formal definition for digital forensic artifacts,” Digit. Investig., vol. 18, pp. S125–
S137, Aug. 2016. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/S1742287616300366

[4] R. Bejtlich, “The origin of the term indicators of compromise (IOCs),” Tao
Security Blogspot, 2018. [Online]. Available: https://taosecurity.blogspot.com/

[5] M. Frazier, “Combat the APT by Sharing Indicators of Compromise,” FireEye
Blog Spot, 2010. [Online]. Available: https://www.fireeye.com/blog/threat-
research/2010/01/combat-apt-sharing-indicators-compromise.html

[6] P. Kral. “Incident handler’s handbook,” Sans Institute, Bethesda, MD, USA,
2011. [Online]. Available: https://www.sans.org/reading-room/whitepapers/
incident/incident-handlers-handbook-33901

[7] S. M, Mims, and T. R. Wylkynsone, “Cyber Event Artifact Investigation Training
in a Virtual Environment,” M.S. thesis, Dept. of IS, NPS, Monterey, CA, USA,
2017. [Online] Available: https://calhoun.nps.edu/bitstream/handle/10945/56767/
17Dec_Mims_Wylkynsone.pdf?sequence=1&isAllowed=y

[8] Microsoft. “Windows lifecycle fact sheet - Windows Help.” Accessed January 16,
2019. [Online]. Available: https://support.microsoft.com/en-us/help/13853/
windows-lifecycle-fact-sheet

[9] P. Yosifovich, M. Russinovich, D. Solomon and A. Ionescu, Windows Internals.
Part 1, System Architecture, Processes, Threads, Memory Management, and
More, 7th ed. Redmond, Microsoft Press: WA, USA, 2017.

[10] Microsoft. “HoloLens.” Accessed January 18, 2019. [Online]. Available:
https://www.microsoft.com/en-us/hololens

114

[11] Microsoft. “Introducing Windows 10 in S mode – performance that lasts.”
Accessed January 27, 2019. [Online]. Available: https://www.microsoft.com/en-
us/windows/s-mode

[12] Microsoft. “Microsoft .NET - .NET and Universal Windows Platform
Development.” Accessed January 27, 2019. [Online]. Available:
https://msdn.microsoft.com/magazine/mt590967

[13] Microsoft. “Dynamic-Link Library Search Order - Windows Applications.”
Accessed January 27, 2019. [Online]. Available: https://docs.microsoft.com/en-
us/windows/desktop/dlls/dynamic-link-library-search-order#search-order-for-
windows-store-apps.

[14] B. Singh and U. Singh, “A forensic insight into Windows 10 Jump Lists,” Digit.
Investing., vol. 17, pp. 1–13, Jun. 2016. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1742287616300202

[15] F. Picasso, “A first look at Windows 10 Prefetch files,” Zena Forensics Blogspot,
2015 [Online]. Available: http://blog.digital-forensics.it/2015/06/a-first-look-at-
windows-10-Prefetch.html

[16] Microsoft. “Dynamic-Link Library Search Order - Windows applications |
Microsoft Docs.” Accessed January 27, 2019. [Online]. Available:
https://docs.microsoft.com/en-us/windows/desktop/dlls/dynamic-link-library-
search-order

[17] Microsoft. “Security Logon Type.” Accessed January 27, 2019. [Online].
Available: https://docs.microsoft.com/en-us/windows/desktop/api/ntsecapi/ne-
ntsecapi-_security_logon_type

[18] Microsoft. “About Processes and Threads - Windows Applications.” Accessed
January 27, 2019. [Online]. Available: https://docs.microsoft.com/en-us/windows/
desktop/procthread/about-processes-and-threads.

[19] Microsoft. “Windows Sysinternals” Accessed January 27, 2019. [Online].
Available: https://docs.microsoft.com/en-us/sysinternals/

[20] Process Hacker. “Overview - Process Hacker 2.” Accessed February 13, 2019.
[Online]. Available: https://processhacker.sourceforge.io/

[21] Microsoft. “Task Scheduler” Accessed January 27, 2019. [Online]. Available:
https://docs.microsoft.com/en-us/windows/desktop/taskschd/task-scheduler-start-
page

[22] M. Dunwoody, “Greater Visibility Through PowerShell Logging.” FireEye,
January 27, 2019. [Online]. Available: https://www.fireeye.com/blog/threat-
research/2016/02/greater_visibilityt.html

115

[23] C. Tyson’s and K. Nelson, “Intrusion Analysis Using Windows PowerShell,”
SANS Inst., Bethesda, MD, USA, 2014 [Online]. Available:
https://www.sans.org/reading-room/whitepapers/detection/intrusion-analysis-
windows-powershell-34585

[24] JPCERT Coordination Center, “Detecting Lateral Movement through Tracking
Event Logs,” no. 2017. [Online] https://www.jpcert.or.jp/english/pub/sr/
20170612ac-ir_research_en.pdf

[25] R. F. Smith, “Windows Security Log Event ID 4624 - An account was
successfully logged on.” Ultimate Windows Security, February 09, 2019.
[Online]. Available: https://www.ultimatewindowssecurity.com/securitylog/
encyclopedia/event.aspx?eventID=4624

[26] Holmes, L. (2019). Windows PowerShell Cookbook: The Complete Guide to
Scripting Microsoft's New Command Shell. 3rd ed. Sebastopol, CA, USA:
O’Reilly, 2010.

[27] J. Hassell, “How to Use PowerShell Objects, How to Tease More Info and
Functionality Out of Them and How Objects Can Be Useful in Scripting
Scenarios,” Computerworld, August 6, 2015. [Online] Available:
https://www.computerworld.com/article/2954261/data-center/understanding-and-
using-objects-in-powershell.html

[28] Microsoft. “Overview of the .NET Framework” Accessed March 21, 2019.
[Online]. Available: https://docs.microsoft.com/en-us/dotnet/framework/get-
started/overview

[29] Techopedia. “What is a Runtime Environment (RTE)” Accessed March 21, 2019.
[Online]. Available: https://www.techopedia.com/definition/5466/runtime-
environment-rte.

[30] T. Keary, “PowerShell Cheat Sheet,” Comparitech, December 6,2018. [Online].
Available: https://www.comparitech.com/net-admin/powershell-cheat-sheet/.

[31] J. Nair, “Live Response Using PowerShell,” SANS Inst., Bethesda, MD, USA,
2013. [Online] Available: https://www.sans.org/reading-room/whitepapers/
forensics/live-response-powershell-34302

[32] T. A. Halvorsen, “Migration to Microsoft Windows 10 Secure Host Baseline,”
official memorandum, Department of Defense, Washington, DC, USA, 2015.
[Online]. Available: https://iasecontent.disa.mil/stigs/pdf/
U_DoD_CIO_Memo_Migration_to_Windows_10_Secure_Host_Baseline.pdf

[33] FireEye. “Mandiant-Trends 2018.” Milpitas, CA, USA, 2018 [Online] Available:
https://www.fireeye.com/content/dam/collateral/en/mtrends-2018.pdf

116

[34] D. Haselhorst, “Uncovering Indicators of Compromise (IoC) Using PowerShell,
Event Logs, and a Traditional Monitoring Tool,” SANS Inst., Bethesda, MD,
USA, 2015. [Online] Available: https://www.sans.org/reading-room/whitepapers/
critical/uncovering-indicators-compromise-ioc-powershell-event-logs-traditional-
monitoring-tool-36352

[35] E. M. Hutchins, M. J. Cloppert, and R. M. Amin, “Intelligence-Driven Computer
Network Defense Informed by Analysis of Adversary Campaigns and Intrusion
Kill Chains, “Lockheed Martin, Bethesda, MD, USA, 2012 [Online]. Available:
https://www.lockheedmartin.com/content/dam/lockheed-martin/rms/documents/
cyber/LM-White-Paper-Intel-Driven-Defense.pdf

[36] Microsoft. “Disrupting the kill chain - Microsoft Secure.” Accessed February 10,
2019. [Online] Available: https://cloudblogs.microsoft.com/microsoftsecure/2016/
11/28/disrupting-the-kill-chain/

[37] Joeware. “NetSess.” Accessed February 10, 2019. [Online]. Available:
http://www.joeware.net/freetools/tools/netsess/index.htm

[38] InfoSecInstitute “PowerShell Toolkit: PowerSploit.” Accessed February 11, 2019
[Online]. Available: https://resources.infosecinstitute.com/powershell-toolkit-
powersploit/#gref

[39] Microsoft. “PsExec - Windows Sysinternals.” Accessed February 10, 2019.
[Online]. Available: https://docs.microsoft.com/en-us/sysinternals/downloads/
psexec

[40] J. Barreto, “The Basics of SMB Signing (covering both SMB1 and SMB2),”
Microsoft, December 1, 2010. [Online]. Available:
https://blogs.technet.microsoft.com/josebda/2010/12/01/the-basics-of-smb-
signing-covering-both-smb1-and-smb2/

[41] Microsoft. “Script Get-NetworkStatistics - netstat -ano with filtering.” Accessed
January 10, 2019. [Online]. Available: https://gallery.technet.microsoft.com/
scriptcenter/Get-NetworkStatistics-66057d71

[42] E. Atac, “Show-ProcessTree” Accessed January 10, 2019. [Online]. Available:
https://p0w3rsh3ll.wordpress.com/2012/10/12/show-proesstree/

[43] Microsoft. “What’s New in PowerShell Core 6.0” Accessed January 10, 2019.
[Online]. Available: https://docs.microsoft.com/en-us/powershell/scripting/whats-
new/what-s-new-in-powershell-core-60?view=powershell-6

117

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
 Ft. Belvoir, Virginia

2. Dudley Knox Library
 Naval Postgraduate School
 Monterey, California

	19Mar_Turner_Galloway_First8
	19Mar_Turner_Galloway
	I. INTRODUCTION
	A. THE DoD CYBER INCIDENT HANDLING PROGRAM
	1. Detection Phase
	2. Preliminary Analysis Phase
	3. Preliminary Response Actions Phase
	4. Incident Analysis Phase

	B. ARTIFACTS
	C. INDICATOR OF COMPROMISE (IOC)
	D. PREVIOUS RELATED WORK
	E. REPORT ORGANIZATION

	II. CANDIDATE WINDOWS OS 10 ARTIFACTS OF INTEREST
	A. Windows 10 Overview
	B. THE “FULPRANT EIGHT”
	1. Files
	a. Master File Table (MFT)
	b. File System Redirector
	c. Mapped Drives and Open Shares
	d. LNK files and Jump Lists
	e. Prefetch Files and Timestamps
	f. Browser Artifacts
	g. DLLs

	2. Users
	3. Processes
	a. Running Process-Related Information
	b. DNS Cache

	4. Registry
	5. Accounts
	6. Network Configuration and Connectivity Information
	a. Active Network Connections and Related Processes
	b. Machine and OS Information

	7. Task Scheduler
	8. Logs
	a. Account Activity Logs
	b. Application, Processes and Service Logs
	c. Wireless LAN (WLAN) Logs
	d. Scheduled Task Logs
	e. PowerShell Logs

	III. POWERSHELL
	A. CMDLET STRUCTURE
	B. IDENTIFYING PROMINENT WINOS 10 ARTIFACTS USING POWERSHELL
	1. Machine and OS Information
	2. Files
	a. Open Files
	b. Open Shares
	c. Mapped Drives
	d. Jump List
	e. Prefetch Files/ Timestamps
	f. DNS Cache

	3. Users Logged-On
	4. Logs
	a. Relevant Security and Event Logs
	b. Anti-virus Applications and logs

	5. Processes
	a. Running Process and Related Information
	b. Running Services
	c. Suspicious Dynamic Link Library (DLL) Execution

	6. Registry
	a. Relevant Registry Locations
	b. Startup Applications

	7. Accounts
	8. Network Configuration and Connection Information
	9. Tasks Scheduled

	IV. CHOOSING A “NOISY” ATTACK/​COMPROMISE
	A. CONSTRAINTS AND CONSIDERATIONS
	B. EXECUTION OF THE ATTACK/​COMPROMISE AND ARTIFACT GENERATION
	1. Reconnaissance and Exploitation
	a. Attacker Actions
	b. Investigation-worthy Artifacts Created

	2. Lateral Movement
	a. Attacker Actions
	b. Investigation-worthy Artifacts Created

	3. Domain Escalation
	a. Attacker Actions
	b. Investigation-worthy Artifacts Created

	V. EXAMPLE ANALYSIS SCENARIO
	A. General Investigation/Analysis Methodology
	1. Preparation
	2. Customer Complaints and Fact Gathering
	3. Investigation
	4. Documentation

	B. The circe scenario: Step-by-Step
	1. Accounts
	2. Files: Typed URLs
	3. Network Connectivity
	4. Processes
	5. Files
	6. Network Connections: Updated
	7. Processes: Parent and Child Relationships
	8. Files: MFT
	9. Correlation of data
	10. Registry
	11. Logs: PowerShell
	12. Logs: System
	13. Logs: Security
	14. Using CufA as IOC with PowerShell

	VI. Conclusion
	A. Summary
	B. Future Work

	LIST OF REFERENCES
	INITIAL DISTRIBUTION LIST

